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Abstract 

Option pricing is a challenging issue that requires the fulfilment of many assumptions. The market practice for the 
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break the no-arbitrage condition of positive state price densities or price relations. In this paper, we extend our 
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and moneyness, calculate state price densities and analyse the behaviour in different time grids. 
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1. Introduction 

It is already well known that options provide great 

opportunities for hedging and speculation. This is 

a natural consequence of their non-linear payoff 

functions, which can even contain discontinuities and 

other tailor-made features to respond to particular fears 

or beliefs of market participants. Obviously, the pricing 

of options is even more challenging than their usage. 

Functional financial markets require efficient tools 

for the correct valuation of each security. Although 

some financial derivatives have already become very 

liquid and in this sense approach primary assets, such 

as stocks or bonds, for which the price is determined 

solely by the equilibrium principle, the price of, say, 

illiquid or exotic options must be calculated by 

a suitable formula. If such a formula is used properly, 

the resulting prices should be arbitrage free with respect 

to the prices of all other related securities in the market. 

Under the assumption of complete markets, such prices 

should be unique and obviously should not depend on 

the risk attitude of a given market participant. 

During the past decades, many studies have 

documented that the Nobel Prize-awarded Black–

Scholes model (see Black and Scholes (1973) and 

Merton (1973)) itself is not particularly suitable for 

option pricing under most real circumstances, 

especially since it is based on normal distribution and 

does not allow for fat tails and non-symmetry in the 

returns. However, it also appears that alternative 

models that should in theory capture the real market 

evolution better, such as various complex Lévy models, 

are either too difficult for everyday usage or 

significantly case dependent and without frequent 

recalibration cannot lead to correct results or both. 

Some interesting findings regarding the testing of 

option-pricing models can be found, for example, in the 

study by Bates (1995). A review of various models for 

option pricing was provided, for example, by Haug 

(2006), while Cont and Tankov (2010) presented 

advanced models respecting many kinds of real market 

features.   

The market practice (see Dupire (1994) or Derman 

and Kani (1994) for an introduction to the 

consequences) therefore became the use of the Black–

Scholes model only to price illiquid or non-traded 

options but with so-called implied volatility, which is 

volatility obtained by inverting the same formula and 

inserting the market price of an option with parameters 

(especially the underlying asset, time to maturity and 

moneyness) as close as possible to those of the valued 

option. Clearly, since illiquid options differ from liquid 

ones, the proper implied volatility can be obtained only 

by suitable interpolation, which, unfortunately, can 

lead to inefficient pricing at some points; that is, it may 

allow an arbitrage (riskless) profit. Therefore, a specific 

procedure to control the correctness of the result must 

be implemented in the interpolation and subsequent 

smoothing; see, for example, Benko et al. (2007). 

In our previous research, see, for example, Kopa 

and Tichý (2014) and Tichý et al. (2014), we 

concentrated on how to extract all the necessary inputs 

from the quotations provided by the market, including 

the riskless rate, which we called implied. In this paper, 

we proceed further and use such data to construct the 

implied volatility surface for selected options on 

dividend-paying stocks and prove whether the results 

fulfil the arbitrage-free conditions.  

We proceed as follows. In the first section, we 

define the Black–Scholes formula for dividend-paying 

options. Next, we show how to estimate the implied 

volatility using the reverse Black–Scholes formula in 

an arbitrage-free way. Finally, we evaluate the data of 

three equity options from the German market using two 

kinds of the time grid. 

2. Black–Scholes option-pricing model 

An option is a specific type of financial derivative. 

Similar to forward, futures and swap contracts, its value 

depends on the price of its underlying asset, which can 

be a stock, bond, currency or even commodity, but the 

function that determines the payoff at maturity is non-

linear and might even be discontinuous. It is given by 

the fact that the option holder has the right to exercise 

the option in a given period of time but not the 

obligation. Obviously, such a right will be executed 

only if it is efficient, which means that the payoff is 

positive. It also implies that the option value cannot be 

negative. 

At this point it is important to note that, according 

to the type of the right, we distinguish call (the right to 

buy the underlying asset) and put (the right to sell the 

underlying asset) options and that the right can be 

exercised only at the maturity time (European options) 



S. Vitali, M. Kopa, T. Tichý – State price density estimation for options with dividend yields 

 

 

83 

or at any time at or prior to its maturity (American 

options). This implies that the prices of American 

options should not be lower than those of European 

options, though for options on non-dividend-paying 

stocks it holds that the prices of European options are 

the same as those of American options.  

After various attempts to price options over several 

decades, Black and Scholes (1973) and Merton (1973), 

mostly independently, derived a formula to price an 

option on a (non-dividend) stock, the price of which 

follows a geometric Brownian motion: 

  𝑆(𝑡) = 𝑆(0)𝑒𝑥𝑝 ((𝜇 − 𝜎2 2⁄ )𝑡 + 𝜎√𝑡𝑍),   (1) 

where S is the price of the stock,  is its long-term 

return (drift),  is its volatility and Z is a random term 

of standard normal distribution.  

The arguments of Black and Scholes (1973) were 

based initially on the no-arbitrage principle – the price 

must be such that, if one creates a portfolio of an option 

(or options) and its underlying asset, there must be no 

sure profit. The pricing formula comes from the fact 

that a suitable combination of the option and its 

underlying asset exists that is riskless and thus must 

earn a riskless profit. The change in the value of such 

a portfolio within infinitesimal time can be expressed 

via a so-called Black–Scholes partial differential 

equation, the solution of which is the Black–Scholes 

formula for a European call option price: 

  𝑉(𝑐𝑎𝑙𝑙) = 𝑆𝑁(𝑑+) − 𝑒𝑥𝑝(−𝑟𝜏)𝐾𝑁(𝑑−),  (2)  

where 

 𝑑± =
𝑙𝑛(𝑆 𝐾⁄ )+(𝑟±𝜎2 2⁄ )𝜏

𝜎√𝜏
,          (3)  

where S is the spot price of the underlying asset, K is 

the strike price,  is the volatility of its returns, r is the 

riskless rate, 𝜏 is the time to maturity and N(.) states the 

distribution function of the standard normal 

distribution. 

In this paper we consider dividend-paying stocks. 

For such purposes the formula above must be modified 

for the additional return that is provided to the holder 

of the stock. Assuming that it can be approximated as 

a continuous-type return q, formulas (2–3) appear as 

follows: 

 𝑉(𝑞, 𝑐𝑎𝑙𝑙) = 𝑒𝑥𝑝(−𝑞𝜏)𝑆𝑁(𝑑+) 

 −𝑒𝑥𝑝(−𝑟𝜏)𝐾𝑁(𝑑−),  (4)  

where 

 𝑑± =
𝑙𝑛(𝑆 𝐾⁄ )+(𝑟−𝑞±𝜎2 2⁄ )𝜏

𝜎√𝜏
. (5)  

 

A related formula for put options can easily be obtained 

by the put–call parity relation or by several simple 

operations, both of which lead just to a change of signs 

as follows: 

  𝑉(𝑞, 𝑝𝑢𝑡) = −𝑒𝑥𝑝(−𝑞𝜏)𝑆𝑁(−𝑑+) + 

 𝑒𝑥𝑝(−𝑟𝜏)𝐾𝑁(1 − 𝑑−). (6)  

3. Arbitrage-free market volatility estimation 

We can now proceed to present a method for implied 

volatility surface estimation and state price density 

surface estimation. This method employs the Black–

Scholes formula and semi-parametric local quadratic 

smoothing techniques (using kernel functions). 

Moreover, the modelling is performed in such a way as 

to avoid the violation of arbitrage-free conditions 

expressed in terms of state price density and so-called 

total variance (Kahalé, 2004; Fengler, 2012). The 

method was originally proposed by Benko et al. (2007) 

for options with no dividend yields. We will modify 

this method for the case in which the underlying asset 

is a dividend-paying stock. This means that our analysis 

uses the Black–Scholes formula modified for 

a dividend yield (4) instead of its basic form (2).  

Consider data with 𝑛 options on the same 

underlying asset. We assume that the underlying asset 

is a stock with the spot price 𝑆 and dividend yield 𝑞. 

Each option is characterized by its price (observed on 

the market), strike price 𝐾𝑖, time to maturity 𝜏𝑖 and 

corresponding risk-free rate 𝑟𝑖. Moreover, the strike 

price and spot price ratio is called moneyness, and we 

use it in the future form as future moneyness 

𝜅𝑖 = 𝐾𝑖/(𝑆𝑒(𝑟𝑖−𝑞)𝜏𝑖). From this information we can 

compute observed implied volatility �̃�𝑖 (using the 

Black–Scholes formula), and the goal is to estimate 

a ‘true’ implied volatility surface 𝜎(𝜅, 𝜏) using local 

quadratic smoothing procedures with arbitrage-free 

conditions. The estimation is performed point by point 

for all reasonable choices of 𝜅 and 𝜏. 

Combining all these, we estimate the implied 

volatility surface by solving the following optimization 

problem:   

 

 min ∑𝑚
ℓ=1 ∑𝑛

𝑖=1 [�̃�𝑖 − 𝛼0(ℓ) − 𝛼1(ℓ)(𝜅𝑖 − 𝜅) − 

 𝛼2(ℓ)(𝜏𝑖 − �̃�ℓ) − 𝛼11(ℓ)(𝜅𝑖 − 𝜅)2 − 

𝛼12(ℓ)(𝜅𝑖 − 𝜅)(𝜏𝑖 − �̃�ℓ) − 

 𝛼22(ℓ)(𝜏𝑖 − �̃�ℓ)2]2𝒦𝐇(𝜅 − 𝜅𝑖 , �̃�ℓ − 𝜏𝑖)  (7) 

subject to 

√�̃�ℓ𝜑(𝑑1(ℓ)) {
1

𝜅2𝛼0(ℓ)�̃�ℓ

+
2𝑑1(ℓ)

𝜅𝛼0(ℓ)√�̃�ℓ

𝛼1(ℓ)

+
𝑑1(ℓ)𝑑2(ℓ)

𝛼0(ℓ)
𝛼1(ℓ)2 + 2𝛼11(ℓ)}

≥ 0,     

 ℓ = 1, … , 𝑚     (8)  

 2�̃�ℓ𝛼0(ℓ)𝛼2(ℓ) + 𝛼0(ℓ)2 > 0, ℓ = 1, … , 𝑚  (9) 
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 𝛼0(ℓ)2�̃�ℓ < 𝛼0(ℓ′)2�̃�
ℓ′ , 

 �̃�ℓ < �̃�ℓ′ , ℓ, ℓ′ = 1, … , 𝑚  (10) 

 𝑑1(ℓ) =
𝛼0(ℓ)2�̃�ℓ/2−log(𝜅)

𝛼0(ℓ)√�̃�ℓ
, ℓ = 1, … , 𝑚   (11)  

 𝑑2(ℓ) = 𝑑1(ℓ) − 𝛼0(ℓ)√�̃�ℓ, ℓ = 1, … , 𝑚   (12) 

where the minimization takes over variables 𝛼0(ℓ),  
𝛼1(ℓ),   𝛼2(ℓ),  𝛼11(ℓ),  𝛼12(ℓ),  𝛼22(ℓ),   ℓ = 1, … , 𝑚 

and: 

 𝜅 is the particular value of future moneyness in 

which the estimation is performed;   

 𝜅𝑖 , 𝑖 = 1, … , 𝑛 are observed values of future 

moneyness computed as 𝐾𝑖/(𝑆𝑒(𝑟𝑖−𝑞)𝜏𝑖); 

 �̃�ℓ, ℓ = 1, … , 𝑚 are particular values of time to 

maturity; 

 the estimated implied volatilities �̂�(𝜅, �̃�ℓ), ℓ =

1, … , 𝑚 are derived from optimal 𝛼0(ℓ), ℓ =

1, … , 𝑚, that is, �̂�(𝜅, �̃�ℓ) = 𝛼0(ℓ), ℓ = 1, … , 𝑚; 

 𝒦𝐇(𝜅 − 𝜅𝑖 , �̃�ℓ − 𝜏𝑖) is a kernel function, for 

example the Epanechnikov kernel function, with 

bandwidth matrix 

𝐇 = (
ℎ𝜅 0
0 ℎ𝜏

); 

see Benko et al. (2007) for more details; the choice 

of  ℎ𝜅 and ℎ𝜏 will be discussed further in the next 

section; 

 constraints (8), (9) and (10) guarantee the positivity 

of the state price density, which is estimated as: 

 √�̃�ℓ𝜑(𝑑1(ℓ)) {
1

𝜅2𝛼0(ℓ)�̃�ℓ
+

2𝑑1(ℓ)

𝜅𝛼0(ℓ)√�̃�ℓ
𝛼1(ℓ) +

𝑑1(ℓ)𝑑2(ℓ)

𝛼0(ℓ)
𝛼1(ℓ)2 + 2𝛼11(ℓ)}    (13) 

where 𝜑 is the cumulative probability distribution 

function of the standard Gaussian distribution; 

 beside the positivity of the state price density, the 

arbitrage-free conditions include (9) and (10) 

corresponding to the requirement of increasing the 

total variance, which is estimated as 𝛼0(ℓ)2�̃�ℓ, ℓ =

1, … , 𝑚.   

4. Results 

In this section we focus on the estimation results of the 

implied volatility surface and state price density surface 

for three selected stocks from the German market, first 

assuming a normal calendar grid and second using an 

artificial calendar grid. The selected stocks are those for 

which the most data are available. 

Normal calendar grid 

We use as the data set all the available options on three 

stocks (BASF SE, Bayer AG and SAP SE) listed on the 

German option market on 8 December 2008. These 

stocks pay dividends; therefore, we compute the 

dividend yields of these stocks first. Then we compute 

the estimation of the implied volatility surface using 

semi-parametric local quadratic smoothing by solving 

the non-linear programming problem (7)–(12) for each 

𝜅 = 0.7, 0.71, … ,1.4 step by step. In this section we 

consider only the times to maturity �̃�ℓ, ℓ = 1, … , 𝑚 

observed on the market; that is, we take a so-called 

normal calendar grid. The next section will show the 

modifications for the artificial (regular) grid.  

We focus on the most relevant part of the implied 

volatility surface; that is, only times to maturity shorter 

than two years are of interest. The reason is that there 

are usually not enough data for longer times to 

maturity; moreover, the implied volatility surface 

seems to be ‘stabilized’ for times to maturity longer 

than one year. 

In Figs 1, 2 and 3, we show as representative 

pictures the estimation with the Epanechnikov kernel 

function, using bandwidth ℎ𝜅 = 0.25 for moneyness 

and ℎ𝜏 = 1.3 for time to maturity. The historical data 

(black dots) are well described by the estimated surface. 

The implied volatility smile (as a cut for a particular 

time to maturity) is clear for short times to maturity and 

becomes less noticeable as the time to maturity 

increases. While the bandwidth for time to maturity is 

simply given as the smallest possible to have enough 

data for all the estimations, the bandwidth for 

moneyness can be chosen almost arbitrarily. To find the 

best bandwidth value for moneyness, we produce the 

following estimations for the SPD for the fixed calendar 

bandwidth ℎ𝜏 = 1.3 and various values of the 

moneyness bandwidth using (13). 

The computations are performed again with the 

Epanechnikov kernel function and with five 

representative bandwidths for moneyness, ℎ𝜅 =
 0.10, 0.15, 0.20, 0.25, 0.30, and bandwidth ℎ𝜏 = 1.3 

for time to maturity. If the moneyness bandwidth is 

smaller than 0.1, the lack of data does not allow for 

estimations in all the points. When increasing the 

moneyness bandwidth, one can observe that the 

estimated SPDs are not smooth enough until ℎ𝜅 =
0.25. Moreover, there is no evident difference between 

the results for ℎ𝜅 = 0.25 and those for ℎ𝜅 = 0.30. 

Therefore, it makes no sense to use a moneyness 

bandwidth larger than 0.25 (one would pointlessly 

increase the bias of the estimators), and we conclude 

that the best choice for the moneyness bandwidth is  

ℎ𝜅 = 0.25. 
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Figure 1 IV surface estimate (BASF) 

 

Figure 2 IV surface estimate (Bayer) 

 

Figure 3 IV surface estimate (SAP) 

We can easily check in Fig. 7 that the estimated 

SPD is always positive. Moreover, as shown in Fig. 8, 

the total variance is increasing; hence, the arbitrage-

free conditions are not violated, and using (7)–(12) we 

obtain the arbitrage-free estimate of the implied 

volatility surface as proved by Benko et al. (2007).  

Artificial calendar grid 

In the previous subsection, all the computations were 

performed using as the calendar grid the observed times 

to maturity of the options. In this way, the accuracy of 

the computations was strictly related to the data set 

structure. In the following analysis, contrary to Benko 

et al. (2007), we follow Kopa et al. (2017) and 

discretize the calendar grid artificially to obtain 

a regular grid with a one-month step. Hence, we obtain 

a calendar grid with twenty-four points. Moreover, we 

restrict the interval in the moneyness direction to avoid 

extreme values; that is, we again consider only 𝜅 from 

interval (0.7,1.4). Finally, we show the estimation of 

the implied volatility surface in Figs 4 to 6 using (7)–

(12). 

In Figs 4 to 6, we show as representative pictures 

(and for comparisons with Figs 1 to 3) the estimation 

with the Epanechnikov kernel function, using 

bandwidth ℎ𝜅 = 0.25 for moneyness and ℎ𝜏 = 1.3 for 

time to maturity. Similarly to the previous section, 

using (13) we produce the estimates for the SPD (Fig. 

9), concluding that the best choice for the moneyness 

bandwidth is again ℎ𝜅 = 0.25.  

As in the previous case, the computation is 

performed with the Epanechnikov kernel function. 

Moreover, we can again easily verify that the arbitrage-

free conditions are not violated. Fig. 9 shows that all the 

estimated SPDs are positive, and Fig. 10 shows the 

increasing total variances. 

Finally, in Fig. 11 we propose a comparison of the 

estimated SDPs for the normal (observed) calendar grid 

with those for the artificial (regular) calendar grid for 

all the stocks, with bandwidth ℎ𝜅 = 0.25 for 

moneyness and bandwidth ℎ𝜏 = 1.3 for time to 

maturity. 

Fig. 11 shows that, using the artificial grid, one 

obtains more skewed state price densities for short 

times to maturity and less smoothed state price 

densities for long times to maturity. This can be the 

advantage of the proposed artificial grid, especially for 

very short (less than one month) or long (more than one 

year) times to maturity compared with the normal 

(observed) grid proposed by Benko et al. (2007).   
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Figure 4 Artificial calendar grid (BASF) 

 

Figure 5 Artificial calendar grid (Bayer) 

 

Figure 6 Artificial calendar grid (SAP) 

5. Conclusion 

Although the Black–Scholes formula for option pricing 

cannot not be regarded as theoretically correct due to 

its strict assumptions on the character of the underlying 

asset price process, it may still be very useful for the 

pricing of non-traded or illiquid options for which one 

can find other suitable options with closely related 

features that are liquid and provide the so-called 

implied volatilities. When accompanied by implied 

volatilities, it can also work as a good benchmark for 

more advanced models, such as complex Lévy 

processes. 

In the paper we concentrated on developing and 

analysing an optimization rule, which should allow us 

to estimate an arbitrage-free and smooth implied 

volatility surface from the market prices of options on 

dividend-paying stocks. It was also empirically shown 

that state prices densities and total variances behave 

similarly to non-dividend-paying options when 

requiring an always-positive state price density and 

increasing total variance in maturity – both arbitrage-

free conditions. Moreover, the procedure was extended 

to obtain a so-called artificial calendar grid, which 

proved to be useful especially for short- or long-lived 

dividend-paying options.   

These results seem to be a promising step towards 

deeper analyses of options with discrete dividends of 

uncertain parameters or even American call options, for 

which it is well known that they might have a higher 

value than their sibling European calls only in the case 

of dividend payments. 

References 

BATES, D. S. (1995). Testing option pricing models. 

In: G.S. MADDALA, RAO, C.R. (eds.), Statistical 

Methods in Finance (Handbook of Statistics, Vol. 14), 

pp. 567–611. Amsterdam: Elsevier. https://doi.org/ 

10.3386/w5129 

BENKO, M., FENGLER, M., HARDLE, W., KOPA, 

M. (2007). On Extracting Information Implied in 

Options. Computational statistics 22: 543–553. 

https://doi.org/10.1007/s00180-007-0061-0 

BLACK, F., SCHOLES, M. (1973). The pricing of 

options and corporate liabilities. Journal of Political 

Economy 81: 637–659. https://doi.org/10.1086/260062 

CONT, R., TANKOV, P. (2010). Financial Modelling 

with Jump Processes, 2nd ed. Boca Raton: Chapman & 

Hall/CRC press.  

DERMAN, E., KANI, I. (1994). Riding on a Smile. 

Risk 7(2): 139–145.  

DUPIRE, B. (1994). Pricing with a smile. Risk 

Magazine 7 (1): 18–20. 

FENGLER, M. R. (2012). Option Data and Modeling 

BSM Implied Volatility. In Handbook of 

Computational Finance, Springer Handbooks of 

Computational Statistics, Part 2, 117–142. 

https://doi.org/10.1007/978-3-642-17254-0_6 

HAUG, E. G. (2006). The Complete Guide to Option 

Pricing Formulas. New York: McGraw-Hill. 



S. Vitali, M. Kopa, T. Tichý – State price density estimation for options with dividend yields 

 

 

87 

KAHALÉ, N. (2004). An arbitrage-free interpolation 

of volatilities. Risk 17(5): 102–106. 

KOPA, M., TICHÝ, T. (2014). No arbitrage condition 

of option implied volatility and bandwidth selection. 

Anthropologist 17(3): 751–755. https://doi.org/10. 

1080/ 09720073.2014.11891489 

KOPA, M., VITALI, S., TICHÝ, T., HENDRYCH, R. 

(2017). Implied volatility and state price density 

estimation: arbitrage analysis. Computational 

Management Science 14 (4): 559–583. https://doi.org/ 

10.1007/s10287-017-0283-8 

MERTON, R. C. (1973). Theory of rational option 

pricing. Bell Journal of Economics and Management 

Science 4: 141–183. https://doi.org/10.2307/3003143 

TICHÝ, T., KOPA, M., VITALI, S. (2014). On the 

pricing of illiquid options with Black-Scholes formula. 

In: Managing and Modelling of Financial Risks, 

Ostrava: VSB-TUO, pp. 610–616. 

 
ℎ𝑘 BASF Bayer SAP 

0.10 

   

0.15 

   

0.20 

   

0.25 

   

0.30 

   

Figure 7 SPD estimate 
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Figure 8 Estimated total variance with normal calendar grid using ℎ𝜅 = 0.25 and ℎ𝜏 = 1.3. 
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Figure 9 SPD estimate with artificial calendar grid 
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BASF Bayer SAP 

   

Figure 10 Estimated total variance with artificial calendar grid using ℎ𝜅 = 0.25 and ℎ𝜏 = 1.3 
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Figure 11 SPD estimate with normal and with artificial calendar grid



  

 

 

 

 


