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Abstract 

One of the typical option classes is formed by lookback options whose values depend also on the extrema of the 

underlying asset over a certain period of time. Moreover, incorporating the American constraint, which admits early 

exercise, has increased the popularity of these hedging and speculation instruments over recent years. In this paper, 

we consider the problem of pricing continuously observed American-style lookback options with fixed strike. Since 

no analytic formulae exist for this case, we follow an approach that formulates the corresponding option pricing 

problem as the parabolic partial differential inequality subject to a constraint, handled by a penalty technique. As 

a result, we obtain the pricing equation restricted to a triangular domain, where the path-dependent variable appears 

as a parameter only in the initial and boundary conditions. The contribution of the paper lies in the proposal of 

a numerical scheme that solves this option pricing problem. The numerical technique proposed arises from the dis-

continuous Galerkin that enables easy implementation of penalties and weak enforcement of boundary conditions. 

Finally, the capabilities of the numerical scheme are demonstrated within a simple empirical study on the reference 

experiments. 
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1. Introduction 

The complexity of business relations leads to various 

cash flow patterns and often requires usage of specific 

securities in order to manage resulting risk properly. 

The most challenging among such securities are exotic 

options providing their owners a right to trade an un-

derlying asset – such right is utilized only when it 

makes financial sense for the owner, i.e. positive cash 

flow is generated, and some further conditions are ful-

filled, i.e. exotic options (compare with plain vanilla 

options).  

The first rigorous treatment of option valuation 

dates back to the seminal papers of Black and Scholes 

(1973) and Merton (1973) focusing on European plain 

vanilla (call and put) options. Subsequent research has 

been focused on various extensions, such as the distri-

bution of underlying asset price returns and their vola-

tility, jumps consideration and also the complexity in 

the pay-off conditions. A detailed review of valuation 

models is provided by, for example, Haug (1997), while 

Cont and Tankov (2004) study many extensions to the 

underlying asset price distribution with basic pay-off 

classes. 

While European options implicitly assume that the 

owner would wish to exercise his or her right just at the 

maturity, American options admit option exercising 

immediately when the owner wishes. That is why the 

value of American options depends on possible future 

decisions. It follows that the usage of numerical ap-

proximation techniques is commonly inevitable – see, 

for example, Duffy (2006), Topper (2005) or Hozman 

et al. (2018b) for their reviews. 

In this contribution, we extend the previous re-

search by Hozman and Tichý (2017) and Hozman et al. 

(2018a) and develop a valuation scheme for American 

lookback options with continuous sampling under sim-

plifying Black and Scholes’ (BS) benchmark setting, 

which is based on the discontinuous Galerkin (DG) 

method. The foundations of the DG approach are re-

viewed by Cockburn et al. (2005). Further, Nicholls and 

Sward (2015) provide American option pricing appli-

cations of the DG technique and recast the pricing prob-

lem as a linear complementarity problem. In contrast, 

the approach presented in this paper combines the DG 

method with penalty techniques proposed by Zvan et al. 

(1998). Concerning American lookback option pricing, 

authors’ interest is paid in particular to binomial valua-

tion schemes, as in Babbs (2000) and Dai (2000), or fi-

nite difference and element methods, for example, by 

Zhang et al. (2009) and Song et al. (2015), respectively. 

Unfortunately, these studies are addressed to floating 

strike lookback options only.  Therefore, the method 

proposed represents a suitable alternative to these tech-

niques that is sufficiently robust with respect to floating 

as well as fixed strike lookback options and option 

styles (European vs American). Last but not least, the 

advantage of this method is the discontinuous approxi-

mation that has the potential to better identify the prop-

erties of such options, when common approaches have 

difficulty.  

The paper is organized as follows. After specifying 

the pricing problem for American-style options on ex-

trema in the forthcoming section, attention is paid to the 

numerical pricing scheme (Section 3). Finally, in Sec-

tion 4, a simple experimental study with reference re-

sults is available.  

2. Options on extrema with continuous sampling 

We focus on valuing a lookback option (with maturity 

time 𝑇) that depends on the extreme values of the un-

derlying asset 𝑆 obtained by the continuous measure-

ment on the whole time interval  

[0, 𝑡] ⊂ [0, 𝑇] as  

 

𝑚(𝑡) = min
0≤𝑡≤𝑡

𝑆 (�̃�)   or   𝑀(𝑡) = max
0≤𝑡≤𝑡

𝑆 (�̃�)            (1) 

where 𝑡 is the actual time.  

     One can easily observe that for continuous sam-

pling the asset price is necessarily greater than or equal 

to the minimum, and less than or equal to the maxi-

mum, i.e. 𝑚 ≤ 𝑆 ≤ 𝑀. This observation is not true in 

the case of the discrete measurement where the asset 

price 𝑆 also takes values less than 𝑚 or greater than 𝑀, 

cf. Wilmott et al. (1993). This fundamental difference 

between continuously and discretely sampled lookback 

options has to be reflected on the appropriate (𝑆,𝑚)- or 

(𝑆,𝑀)-domain on which the problem is posed. 

     In other words, we concentrate on fixed strike look-

back options (also known as lookback rate options), for 
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which it is characteristic that the variable 𝑚 and 𝑀 are 

incorporated into the pay-off function in the following 

way: 
max (𝑀 −𝒦, 0), for a call,
max (𝒦 − 𝑚, 0), for a put,

                (2) 

where 𝒦 stands for a strike price. The first contract is 

a call option on the maximum realized price with 

agreed price 𝒦, and the second one is a put option on 

the minimum price, respectively. 

     More precisely, the option value 𝑉 can be viewed 

as a function of the actual time 𝑡, the underlying asset 

price 𝑆 = 𝑆(𝑡) and one of the two path-dependent var-

iables 𝑚 = 𝑚(𝑡) and 𝑀 = 𝑀(𝑡), respectively. The 

value 𝑉 at maturity 𝑇 is simply given by (2). In order to 

determine the option value 𝑉 at arbitrary time instants 

0 ≤ 𝑡 < 𝑇, the theory of semimartingales from Jacod 

and Shiryaev (2003) is used to characterize this value 

as a solution of a deterministic governing equation or 

inequality (according to the European or American ex-

ercise features). 

     Next, we introduce the BS framework modified for 

the specified lookback case. Suppose that the price pro-

cess 𝑆(𝑡) evolves over time according to the following 

stochastic differential equation: 

 

d𝑆(𝑡) = 𝜇𝑆(𝑡)d𝑡 + 𝜎𝑆(𝑡)d𝑊(𝑡),     (3) 

where 𝜇𝑆(𝑡)d𝑡 is a drift term with a constant rate  
𝜇 ≥ 0, 𝑊(𝑡) is a standard Brownian motion and  

𝜎 > 0 is the volatility of the asset price. Unfortunately, 

measurements of minimum 𝑚 and maximum 𝑀 are not 

differentiable and thus have to be approximated by ad-

ditional path-dependent quantities: 

𝑚𝑛(𝑡) = (∫ 𝑆
𝑡

0

(�̃�)−𝑛d�̃�)

−
1

𝑛

,   

𝑚(𝑡) = lim
𝑛→∞

𝑚𝑛 (𝑡) = min
0≤𝑡≤𝑡

𝑆 (�̃�) 

(4) 

and 

𝑀𝑛(𝑡) = (∫ 𝑆
𝑡

0

(�̃�)𝑛d�̃�)

1

𝑛

,   

𝑀(𝑡) = lim
𝑛→∞

𝑀𝑛 (𝑡) = max
0≤𝑡≤𝑡

𝑆 (�̃�). 

(5) 

Then, the derivatives of (4) and (5) satisfy: 

 

d𝑚𝑛(𝑡) = −
1

𝑛

𝑚𝑛(𝑡)
𝑛+1

𝑆(𝑡)𝑛
 d𝑡, (6) 

 

d𝑀𝑛(𝑡) =
1

𝑛

𝑆(𝑡)𝑛

𝑀𝑛(𝑡)
𝑛−1

 d𝑡. (7) 

Since 𝑚(𝑡) ≤ 𝑆(𝑡) and 𝑆(𝑡) ≤ 𝑀(𝑡) for all 𝑡 ∈ [0, 𝑇], 
the derivatives (6)–(7) tend to zero as 𝑛 → ∞. In what 

follows we describe both situations for European- and 

American-style options. 

2.1 European case 

The exercise of European-style options is permitted 

only at maturity time 𝑇. We follow the standard ap-

proach consisting of a construction of a hedged portfo-

lio, an elimination of the stochastic components and 

a comparison of the portfolio dynamics by virtue of 

Itô’s lemma. Taking these arguments into account to-

gether with vanishing terms d𝑚𝑛(𝑡) and d𝑀𝑛(𝑡) as 

𝑛 → ∞, the price function of European lookback rate 

put option 𝑉(𝑆,𝑚, 𝑡) or call option 𝑉(𝑆,𝑀, 𝑡) can be 

represented as the unique solution of the partial differ-

ential equation: 

 
𝜕𝑉

𝜕𝑡
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0,                (8) 

 

for 0 < 𝑚 < 𝑆 < ∞ or 0 < 𝑆 < 𝑀 < ∞; 0 < 𝑡 ≤ 𝑇, 

where 𝑟 ≥ 0 is the risk-free interest rate. In fact, equa-

tion (8) is the classical Black-Scholes equation in the 

standard variables 𝑆 and 𝑡. The second spatial variable 

𝑚 or 𝑀 enters here only as a parameter, but it also fea-

tures in the terminal condition:  

𝑉(𝑆,𝑚, 𝑇) = 𝑉𝑇(𝑚), 
𝑉(𝑆,𝑀, 𝑇) = 𝑉𝑇(𝑀), 

(9) 

where 𝑉𝑇 is given by (2). 

2.2 American case 

In contrast to the European-style option, an American-

style option can be exercised before the expiry of the 

contract. Therefore, we have to encompass the addi-

tional constraint to the problem (8)–(9) that 

𝑉 ≥ 𝑉𝑇 at any time 𝑡 ∈ [0, 𝑇]. This American feature 

leads to a moving-boundary problem, which consists of 

solving the governing equation and a determination of 

two regions separated by a free boundary ℰ driven by 

the optimal exercise price 𝑆∗.  
     Let sets ΩE

𝑚 ⊂ {[𝑆,𝑚] ∈ (ℝ+ × ℝ+):𝑚 < 𝑆} and  

ΩE
𝑀 ⊂ {[𝑆,𝑀] ∈ (ℝ+ × ℝ+): 𝑆 < 𝑀} denote the exer-

cise region for a put option and call option, respec-

tively. To unify the approach for calls and puts, we 

simply label ΩE as the exercise region. Since it is opti-

mal to exercise the option early in domain ΩE, we solve 

the problem  

 
𝜕𝑉

𝜕𝑡
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 < 0 in ΩE          (10) 

 

for  0 < 𝑡 ≤ 𝑇, under the condition 𝑉 = 𝑉𝑇. 

     While in the continuation region, it is not optimal to 

exercise early and we solve the following problem 

 
𝜕𝑉

𝜕𝑡
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0 in (ℝ+ × ℝ+)\ΩE           

(11) 
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for 𝑚 < 𝑆 or 𝑆 < 𝑀; 0 < 𝑡 ≤ 𝑇, under the condition 

𝑉 > 𝑉𝑇.  

     The well-posedness of (10)–(11) is guaranteed by 

a continuity of the option value 𝑉 and partial deriva-

tives 𝜕𝑉/𝜕𝑆 and 𝜕𝑉/𝜕𝑚 or 𝜕𝑉/𝜕𝑀 on the free bound-

ary ℰ – see Hozman and Tichý (2020a). There are sev-

eral treatments for the early-exercise feature: among 

those widely used let us cite the linear complementarity 

problem with penalty approaches by Zvan et al. (1998), 

or the operator splitting methods by Ikonen and Toiva-

nen (2004). In this paper we follow the penalty tech-

nique and reformulate both problems (10) and (11) into 

one equation valid everywhere in both regions, i.e.  

 

        
𝜕𝑉

𝜕𝑡
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 + 𝑞 = 0,          (12) 

where 𝑞 = 𝑞(𝑆,𝑚, 𝑡) and 𝑞 = 𝑞(𝑆,𝑀, 𝑡), respectively,  

are defined to ensure American constraint 𝑉 ≥ 𝑉𝑇 and 

satisfy the conditions:  

 

𝑞 =  {   
       zero,   if 𝑉 > 𝑉𝑇 ,

positive,   if 𝑉 = 𝑉𝑇 .
          (13) 

 

     This new quantity 𝑞 can be viewed as an additional 

non-linear source term in the governing equation (12) 

to guarantee that the value of an American option can-

not fall below its pay-off function at any time 𝑡. The 

choice of 𝑞 is specified in the next section.  

3. Numerical valuation of options  

Because no general analytical pricing formulae are 

available for finite maturity American options under 

BS framework, we have to rely on numerical schemes. 

In our study, we employ the DG method, already ap-

plied in the field of financial engineering, see, for ex-

ample, Hozman and Tichý (2020a, 2018), which im-

proves the valuation process for options. We proceed in 

the following steps. We start with a reformulation of the 

option pricing problem localized to a bounded spatial 

domain with forward time running. Consequently, we 

recall the variational form of the penalty term for the 

American constraint. Finally, we mention the standard 

spatial and temporal discretization steps and present the 

numerical scheme.  

3.1 Initial-boundary value problem 

The pricing equation (12) is accompanied by the partic-

ular pay-off (9) prescribed at maturity 𝑇. On the other 

hand, from the numerical point of view, it is suitable to 

use the forward time. Setting �̂� = 𝑇 − 𝑡 the time to ma-

turity and suppressing the dependence on 𝑆, 𝑚 and 𝑀 

(to unify the approach), we get 𝑢(�̂�) = 𝑉(𝑡) and �̂�(�̂�) =
𝑞(𝑡) as a new option price function and a new penalty 

term, respectively. 

     Further, we restrict the initial problem to a bounded 

domain Ω. For this purpose let 𝑆max > 𝑆
∗ and 𝑀max de-

note the maximal sufficient value of the underlying as-

set and maximal possible value of its maximum, respec-

tively. Without loss of generality 𝑀max = 𝑆max, i.e. we 

consider the upper triangular domain Ω:= {[𝑆,𝑀] ∈
(ℝ+ × ℝ+): 𝑆 < 𝑀 ∧ 𝑀 < 𝑀max} for a lookback rate 

call and the lower triangular domain Ω:= {[𝑆,𝑚] ∈
(ℝ+ × ℝ+):𝑚 < 𝑆 ∧ 𝑆 < 𝑆max} for a lookback rate 

put, respectively. Consequently, the transformed gov-

erning equation with the initial condition, localized on 

the bounded domain, can be rewritten as 

 

 
𝜕𝑢

𝜕�̂�
−
𝜕

𝜕𝑆
(
1

2
𝜎2𝑆2

𝜕𝑢

𝜕𝑆
) +

𝜕

𝜕𝑆
((𝜎2 − 𝑟)𝑆𝑢) 

+(2𝑟 − 𝜎2)𝑢 = �̂�   (14) 

𝑢(0) = 𝑢0: = 𝑉𝑇 .                (15) 

 
     Since the problem (14)–(15) is defined on the 

bounded domain Ω, we have to impose values of 𝑢 on 

appropriate parts of boundary 𝜕Ω. The prescribed val-

ues are chosen to be compatible with the pay-off func-

tion, in accordance with the vector field determined by 

the characteristics of (14) and by the American con-

straints. Since the variables 𝑚 and 𝑀 are not present in 

the differential operator in (14), the convection does 

not propagate in the 𝑚- and 𝑀-directions and thus no 

boundary condition has to be imposed on the boundary 

parallel to the 𝑆-axis (i.e. 𝑚 = 0 for a lookback rate put 

and 𝑀 = 𝑀max for a lookback rate call). On line 𝑆 = 0 

the price of a lookback rate call is given by American 

constraint 𝑢(0,𝑀, �̂�) = 𝑀 −𝒦 that is enforced only 

for 𝑀 ≥ 𝒦 and the remaining part {0} × (0,𝒦) is con-

sidered as an outflow boundary. In the case of a look-

back rate put, the American constraint is enforced on 

line 𝑆 = 𝑆max; more precisely, we set 𝑢(𝑆max, 𝑚, �̂�) =
𝒦 −𝑚 for 𝑚 ≤ 𝒦 and the remaining part {𝑆max} ×
(𝒦, 𝑆max) is considered as an outflow boundary. Fi-

nally, for the particular situation 𝑆 = 𝑚 (put) and 𝑆 =
𝑀 (call), we can argue that the value of the lookback 

option for both cases should be insensitive to infinites-

imal changes in 𝑚 and 𝑀, respectively, i.e. 
𝜕𝑢

𝜕𝑚
(𝑚,𝑚, �̂�) = 0 and 

𝜕𝑢

𝜕𝑀
(𝑀,𝑀, �̂�) = 0, see Kwok 

(2008).  

     The rigorous treatment of these boundary conditions 

plays an important role in achieving highly accurate so-

lutions. A special interest here is due to the presence of 

a derivative boundary condition with respect to the pa-

rameter 𝑚 or 𝑀. In contrast to Kwok (2008), we pro-

pose here the weak enforcement of this homogeneous 

boundary condition that is incorporated in the discrete 

formulation by the following term  
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𝜎2

2
∫𝑆2

Γ

(
𝜕𝑢

𝜕𝑆
+ 𝛼

𝜕𝑢

𝜕𝑚
) 𝑛𝑆 𝑣d𝑠, (16) 

or 

 
𝜎2

2
∫𝑆2

Γ

(
𝜕𝑢

𝜕𝑆
+ 𝛼

𝜕𝑢

𝜕𝑀
) 𝑛𝑆 𝑣d𝑠, (17) 

where 𝑛𝑆 is the first component of the outer unit vector 

to boundary Γ = {[𝑆, 𝑆] ∈ (ℝ+ × ℝ+): 𝑆 < 𝑆max} and 

𝛼 > 0 is a suitably defined large number that represents 

a weight with which this boundary condition is en-

forced, see Hozman and Tichý (2020b). 

Finally, note that relations (14)–(15) accompanied 

with proper boundary conditions pose the initial-

boundary value problem, which is closely related to the 

class of convection-diffusion problems. Moreover, the 

governing equation (14) has no explicit dependency on 

the variables 𝑚 and 𝑀, which are only present in the 

initial and boundary conditions. Therefore, the pro-

posed numerical schemes for solving such problems 

have to take these properties into account. 

3.2 Penalty technique 

In order to handle the American early-exercise feature 

and force the solution of (14) to be equal to the pay-off 

in the exercise region ΩE, we were inspired by Zvan et 

al. (1998) and introduce, for a sufficiently regular func-

tion 𝑣, the variational form of penalty term �̂� as  
 

 

(�̂�(�̂�), 𝑣)

= 𝑐𝑝∫𝜒exe
Ω

(�̂�)(𝑢0 − 𝑢(�̂�))𝑣 d𝑆

= 𝑐𝑝∫𝜒exe
Ω

(�̂�)𝑢0𝑣 d𝑆
⏟            

𝒬R(𝑣)

− 𝑐𝑝∫𝜒exe
Ω

(�̂�)𝑢(�̂�)𝑣 d𝑆
⏟              

𝒬L(𝑢,𝑣)

 

(18) 

which where (⋅,⋅) denotes the inner product in 𝐿2(Ω). 
The function 𝜒exe(�̂�) in (18) is defined as an indicator 

function of the region ΩE at time instant �̂� and 𝑐𝑝 > 0 

represents a weight to enforce the early exercise. In line 

with Hozman and Tichý (2018), we set 𝑐𝑝 proportional 

to 1/𝜏, where 𝜏 is the time step introduced in (21). The 

form (18) can be split into linear functional 𝒬R and bi-

linear form 𝒬L, and we place them on opposite sides of 

the variational formulation of (14), see (19).  

 

3.3 DG numerical scheme 

We present a numerical scheme based on a simple mod-

ification of the DG method (see Rivière (2008) for 

a complete overview) that extends the lookback option 

pricing approach from Hozman and Tichý (2017) to the 

numerical pricing of American-style options using the 

penalty technique. The main idea of the method is to 

construct the solution 𝑢ℎ = 𝑢ℎ(�̂�) from the finite di-

mensional space 𝑆ℎ
𝑝
 consisting of piece-wise polyno-

mial, generally discontinuous functions of the 𝑝-th or-

der defined over the partition 𝒯ℎ of the domain Ω with 

the assigned mesh size ℎ.  

The spatial discretization leads to a system of the 

ordinary differential equations for unknown price func-

tion 𝑢ℎ, i.e.  

 
𝑑

𝑑�̂�
(𝑢ℎ, 𝑣ℎ) +𝒜ℎ(𝑢ℎ, 𝑣ℎ) + 𝒬ℎ(𝑢ℎ, 𝑣ℎ) =

 ℓℎ(𝑣ℎ)(�̂�) + 𝑞ℎ(𝑣ℎ)(�̂�)   ∀ 𝑣ℎ ∈ 𝑆ℎ
𝑝
,  ∀ �̂� ∈ (0, 𝑇),  (19)        

where the initial condition 𝑢ℎ(0) is given by (15), the 

bilinear forms 𝒜ℎ(⋅,⋅) and 𝒬ℎ(⋅,⋅) stand for the discrete 

variants of the spatial partial differential operator 

from (14) and form 𝒬L from (18), respectively. Further, 

the term ℓℎ(⋅)(�̂�) arises from boundary conditions and 

𝑞ℎ(⋅)(�̂�) is given by 𝒬R from (18). For the detailed der-

ivation of the above-mentioned forms we refer the in-

terested reader to Hozman and Tichý (2020a).  

     Next, the temporal discretization of (19) is realized 

by implicit Euler method over the uniform partition of 

the interval [0, 𝑇] with time step 𝜏. Denote 𝑢ℎ
𝑚 ∈ 𝑆ℎ

𝑝
 the 

approximation of the solution 𝑢ℎ(�̂�) at time level �̂�𝑚 ∈
[0, 𝑇]. Moreover, for practical purpose, to evaluate 

forms 𝒬ℎ and 𝑞ℎ we use an element-wise approxima-

tion of the early exercise region as 𝜒exe(�̂�𝑚)|𝐾 ≈
𝜒exẽ (�̂�𝑚)|𝐾 with 

 

𝜒exẽ (�̂�𝑚)|𝐾 = {
1,  if 𝑢ℎ

𝑚−1(𝐵𝐾) < 𝑢0(𝐵𝐾)

0,  if 𝑢ℎ
𝑚−1(𝐵𝐾) ≥ 𝑢0(𝐵𝐾)

, 

  (20) 

for �̂�𝑚 ∈ [0, 𝑇],  𝐾 ∈ 𝒯ℎ, where 𝐵𝐾  denotes a barycentre 

of the element 𝐾. Let 𝑢ℎ
0 ≈ 𝑢0 be the initial state, then 

the discrete solutions 𝑢ℎ
𝑚, 𝑚 ≥ 1 are computed within 

the DG framework by the recurrence scheme  

 

(𝑢ℎ
𝑚+1, 𝑣ℎ) + 𝜏𝒜ℎ(𝑢ℎ

𝑚+1, 𝑣ℎ) + 𝜏𝒬ℎ(𝑢ℎ
𝑚+1, 𝑣ℎ) =

    (𝑢ℎ
𝑚, 𝑣ℎ) + 𝜏ℓℎ(𝑣ℎ)(�̂�𝑚+1)        (21)          

                     + 𝜏𝑞ℎ(𝑣ℎ)(�̂�𝑚+1) ∀ 𝑣ℎ ∈ 𝑆ℎ
𝑝
. 

 

     Finally, let us mention that the equation (21) results 

in a sequence of systems of linear algebraic equations 

with non-symmetric sparse matrices. The solvability of 

such a system is proven in Hozman and Tichý (2018) 

and it is incorporated into the numerical procedure via 

the restarted GMRES solver.  

4. Reference numerical benchmark 

The experimental section introduces two numerical 

benchmarks widely referred to in the literature and pro-

vides the verification of the validity of the proposed nu-
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merical scheme including its capabilities. All computa-

tions are carried out with an algorithm implemented in 

the solver Freefem++; for more details to a mesh gen-

eration/adaptation, the spatial and temporal discretiza-

tion, assembly of a linear algebraic problem, and its 

solving, see Hecht (2012). 

Within the first experiment we examine a newly is-

sued half-year American lookback call option with 

fixed strike. As in Conze and Viswanathan (1991), we 

consider the following model parameters: 𝑇 = 0.5,  

𝑟 = 0.1, 𝜎 = 0.2, 𝒦 ∈ {95, 100, 105}, 𝑆ref = 𝑀ref =
100, 𝑆max = 𝑀max = 2𝑆ref, where 𝑆ref and 𝑀ref deter-

mine the initial price and the current maximum. 

For the purpose of a broader illustration of conver-

gence properties and since the enforcement of the 

boundary condition on line 𝑆 = 𝑀 is crucial for a nu-

merical evaluation, we compute the piece-wise linear 

solutions on a sequence of the adaptively generated  

grids with the fixed number of partition nodes  

𝑛D ∈ {125, 250, 500, 1000, 2000, 3000} along line 

𝑆 = 𝑀. According to Hozman and Tichý (2020b), we 

take 𝛼 = 500√2 in (17). For all scenarios, we assume 

that there are 360 days in a year, take time step propor-

tional to a quarter-day and the American early-exercise 

feature is handled with 𝑐𝑝 = 1/𝜏 in (18). 

     The comparative results evaluated at a given refer-

ence node [𝑆ref, 𝑀ref, 𝑇] are recorded in Table 1.1 to-

gether with bounds from Conze and Viswanathan 

(1991). More precisely, the following relation holds be-

tween the values of European- and American-style 

lookback options with fixed strike under the same mar-

ket conditions 

𝑉Eu ≤ 𝑉Am ≤ 𝑉Eu𝑒
𝑟𝑇 ,                  (22) 

where 𝑉Eu denotes the value of the European option and 

𝑉Am its American counterpart. As it is generally impos-

sible to have closed-form expressions for the value of 

American options, the theoretical bounds (22) provide 

a suitable estimate of their prices, apart from Monte 

Carlo simulations or binomial method, see Babbs 

(2000).  

Table 1.1 Comparison of American lookback rate call option 

values evaluated at reference node 𝑺𝐫𝐞𝐟 = 𝑴𝐫𝐞𝐟 = 𝟏𝟎𝟎, �̂� =
𝑻 for different strikes and partitions.  

𝑛D 𝒦 = 95 𝒦 = 100 𝒦 = 105 

125 20.3833 15.7586 11.4708 

250 19.6407 14.8647 10.4537 

500 19.2845 14.5033 10.1646 

1000 19.1158 14.3132 9.9956 

2000 19.0131 14.2425 9.9325 

3000 18.9846 14.2163 9.9180 

bounds 18.92 – 19.90 14.17 – 14.90 9.89 – 10.30 

 

Table 1.1 is divided into three panels corresponding 

to the particular setting of the strike price. Unsurpris-

ingly, one can easily observe that the proposed ap-

proach gives promising results that match tightly the 

range given by the reference lower and upper bounds 

(22) as 𝑛D increases. Moreover, Figure 1.1 illustrates 

this behaviour for the particular grid and shows the typ-

ical findings of American-style options: that is, they 

cost more than their European counterparts. 

 

Figure 1.1 The American call option prices and the bounds 

related to the European counterparts at �̂� = 𝑻 for particular 

setting: 𝓚 = 𝟗𝟓 and 𝒏𝐃 = 𝟏𝟎𝟎𝟎. The horizontal axis repre-

sents the underlying asset price and the vertical one the values 

of options. 

     Secondly, we investigate the behaviour of the Amer-

ican lookback put option with fixed strike under the 

same market conditions and with the same discretiza-

tion parameters as in the preceding experiment. In Ta-

ble 1.2, which has the similar format to Table 1.1, we 

compare obtained results (evaluated at [𝑆ref, 𝑚ref, 𝑇], 
𝑚ref = 100) with bounds from Conze and Viswana-

than (1991). One can again observe that the obtained 

results are of higher accuracy and match better the ref-

erence bounds as the computational grid is finer. From 

this point of view, the results obtained by the DG ap-

proach are in line with conclusions from the first nu-

merical experiment and thus the presented technique 

shows its promising potential in the field of numerical 

pricing of options.  

Table 1.2 Comparison of American lookback rate put option 

values evaluated at reference node 𝑺𝐫𝐞𝐟 = 𝒎𝐫𝐞𝐟 = 𝟏𝟎𝟎, �̂� =
𝑻 for different strikes and partitions.  

𝑛D 𝒦 = 95 𝒦 = 100 𝒦 = 105 

125 5.7237 10.1591 14.7089 

250 4.9388 9.0875 13.8720 

500 4.7122 8.7042 13.5082 

1000 4.5763 8.5347 13.3194 

2000 4.5123 8.4480 13.2315 

3000 4.4971 8.4296 13.1992 

bounds 4.44 – 4.55 8.32 – 8.75 13.07 – 13.74 
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Finally, we also append the approximate solution 

captured at �̂� = 𝑇 with corresponding bounds (for par-

ticular scenario) in Figure 1.2. Similarly, it is apparent 

that American option prices do not fall below values of 

their European counterparts. Summarizing all the 

above mentioned, from the practical point of view, the 

results obtained meet the expectations of financial prac-

titioners.  

 

Figure 1.2 The American put option prices and the bounds 

related to the European counterparts at �̂� = 𝑻 for particular 

setting: 𝓚 = 𝟏𝟎𝟓 and 𝒏𝐃 = 𝟏𝟎𝟎𝟎. The horizontal axis rep-

resents the underlying asset price and the vertical one the val-

ues of American and European put options. 

5. Conclusions 

Pricing of options is very challenging and a no less im-

portant part of financial engineering. In many cases, op-

tion valuation relies solely on numerical approach, as is 

the case of American-style options. In this contribution 

we have presented a numerical scheme based on the DG 

approach for pricing of continuously sampled Ameri-

can options on extrema, i.e. American lookback call 

and put options with fixed strike. The proposed numer-

ical technique extends our previous results from Hoz-

man and Tichý (2020b), where the American constraint 

is handled by a penalty term and the lookback feature 

is forced by a weak treatment of boundary conditions. 

The experimental study shows a quite good agreement 

to selected benchmarks. However, the deeper analysis 

is welcomed, especially concerning the sensitivity anal-

ysis and estimating the Greeks. Moreover, when the 

valuation procedure is combined with the approach 

from Hozman and Tichý (2017), one can easily price 

either discretely or continuously sampled lookback op-

tions. Last but not least, note that the DG method pre-

sented can be relatively easily extended to other classes 

of path-dependent options with different complexity of 

pay-off functions. 
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