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Abstract 

This article aims to develop rating models based on survival analysis methods. The focus is on the use of the Cox 

proportional hazards model to analyse the time to an event defined as a rating downgrade and to examine the effect 

of selected financial variables on the rating. Two different approaches are used to estimate the models depending 

on whether we are considering one or multiple events for a subject. The results show that the probability of a rating 

downgrade is affected by annual changes in financial variables. Furthermore, the application indicates that the study 

of multiple failure-time data leads to a more suitable model based on the statistical significance of the estimated 

coefficients and the goodness of fit. Overall, the main findings suggest that it is more appropriate to use multiple 

failure-time analysis, which corresponds better to a given problem and allows the use of all the available data, for 

modelling rating downgrades.  
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1. Introduction 

Rating analysis is a current topic as it is related to as-

sessing the credibility of the debtor or issuer of debt se-

curities. Some research on bond rating dates back to the 

1950s, for example the studies by Hickman (1958) and 

Fisher (1959). Regression analysis became one of the 

most used methods to estimate ratings in this period. An 

alternative approach to predicting bond ratings is the 

multiple discriminant analysis introduced, for example, 

by Pinches and Mingo (1973), Ang and Patel (1975), 

Altman and Katz (1976) and Belkaoui (1980). Subse-

quent research compared particular statistical methods; 

for instance, Kaplan and Urwitz (1979) compare or-

dered probit analysis with ordinary least square regres-

sion and Wingler and Watts (1980) compare ordered 

probit analysis with multiple discriminant analysis. Re-

cent studies come from the theoretical framework men-

tioned above and extend the statistical methods to new 

non-conservative approaches, such as neural networks 

(Dutta and Shekhar, 1988; Surkan and Singleton, 

1990). Waagepetersen (2010) assesses the relationship 

between quantitative models and expert rating evalua-

tion. In a more recent study, Altman, Sabato and Wil-

son (2010) focus on the importance of non-financial in-

formation within risk management.  

In recent years, research on rating prediction has 

shifted mainly to the application of machine learning 

methods. Hsu, Chen and Chen (2018) propose a model 

based on the artificial bee colony approach and support 

the vector machine technique. The authors find that 

their bio-inspired computing mechanism provides im-

proved prediction accuracy compared with other statis-

tical methods. Golbayani, Florescu and Chatterjee 

(2020) compare neural networks, support vector ma-

chines and decision trees, finding that decision tree-

based models achieve the best performance. In their re-

search, they apply conventional accuracy measures and 

introduce the so-called notch distance approach, which 

is suitable for comparing the performances of various 

machine learning methods. As it turns out, all the meth-

ods mentioned above are appropriate for rating predic-

tion. The individual models differ mainly in their meth-

odology, the variables used and their ability to predict 

ratings. Therefore, research in this area is currently fo-

cused primarily on improving the predictive accuracy 

of the models. For example, Wang and Ku (2021) de-

velop the parallel artificial neural networks model, 

which creates several independent artificial neural net-

works. As the authors suggest, their approach obtains 

competitive results compared with conventional artifi-

cial intelligence techniques.  

The current research shows that conventional ap-

proaches and newer methods based on artificial intelli-

gence are widely used to model credit ratings. The huge 

advantage of these models is their practical applicabil-

ity and the possibility to use them for potential rating 

revisions. In addition, research studies show that mod-

els' predictive power is sufficient and comparable to 

other commonly used methods in valuing historical 

data based on averages or growth rates. For example, 

Jones, Johnstone and Wilson (2015) examine the pre-

dictive performance of binary classifiers using a large 

sample of international credit ratings. They apply con-

ventional techniques (logit and probit regression and 

linear discriminant analysis) and fully nonlinear classi-

fiers (neural networks, support vector machines, gen-

eral boosting, AdaBoost and random forests). The au-

thors conclude that, although the newer classifiers out-

perform the older ones, simpler classifiers can be viable 

alternatives to more sophisticated approaches, particu-

larly if interpretability is an important objective of pre-

dictive models. 

An alternative way to assess ratings, which is used 

in this article, is based on survival analysis. For exam-

ple, Glennon and Nigro (2005) use a discrete-time haz-

ard framework for measuring the default risk of small 

business loans. Roa, García and Bonilla (2009) propose 

a survival analysis methodology to analyse falling rat-

ing duration. They test macroeconomic variables to 

predict this event in selected countries and find differ-

ences between developed and emerging economies. 

Zhang and Thomas (2012) compare linear regression 

and survival analysis for modelling recovery rates in 

further research. The authors find that linear regression 

is better for recovery rate modelling; however, they 

suggest some adjustments and additional validation. 

Overall, survival analysis methods are typically used 

for modelling rating or credit transitions and time series 

rating patterns (e.g. Parnes, 2007; Figlewski, Frydman 

and Liang, 2012; Louis, Van Laere and Baesens, 2013; 
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Leow and Crook, 2014). Thus, we can model the rating 

behaviour over time and measure, for example, the 

probability of a certain change in the rating depending 

on time and other relevant variables. Therefore, sur-

vival analysis allows us to gain a better understanding 

of the data and their dynamics over time. In addition, it 

is a method used by rating agencies to estimate default 

rates, which are regularly published and used by ana-

lysts and researchers in the financial market. 

It is evident that the current research deals with 

scoring and rating models and that many studies on this 

topic have been published. Still, academic research 

pays more attention to scoring than rating models. Scor-

ing models are typically used in predicting credit de-

fault or corporate bankruptcy. Various modifications of 

these models have a wide application in corporate fi-

nance when assessing a company's financial health, es-

pecially in the banking sector, in which the probability 

of loan repayment default is analysed. Rating models 

work similarly as their purpose is to assess the rating of 

a debt instrument or issuer. These models are also im-

portant in corporate finance, especially in analysing 

debt securities and the investment process. Their appli-

cation is vital when a certified rating is not available. 

These models can also play a key role in valuing bonds 

that are not traded in the public market. In these cases, 

it is especially necessary to consider the risk of default 

carefully, and this is when the models can be used.  

The motivation for our research is the insufficient 

attention paid to this issue and the effort to understand 

the rating behaviour in selected countries over time. 

The aim of this paper is to model the probability of a 

rating downgrade using the method of survival analy-

sis. The focus is on assessing the impact of financial 

variables on negative rating changes. In this study, we 

apply the Cox proportional hazards model to identify 

the economic variables with great potential to signal a 

deterioration in credit ratings. The survival models are 

estimated using two approaches. First, we examine the 

time to the first rating downgrade, ignoring additional 

events. Next, we make use of all the available data and 

account for multiple failure-type data. This procedure 

allows us to compare the two approaches and make rec-

ommendations. The estimated models are designed to 

evaluate the individual rating of an entity, security or 

other debt instrument. The practical application con-

sists mainly of the valuation of debt securities and the 

related estimation of the risk premium and the cost of 

capital.  

The structure of this article is as follows. First, the 

main concepts and methods of survival analysis are de-

scribed in Chapter 2. Attention is paid especially to the 

Cox proportional hazards model and the study of the 

multiple-time data used in the application. Then, in 

Chapter 3, the data and variables entering the model are 

described. Subsequently, the models are estimated and 

the main results are interpreted. Finally, the overall 

findings are summarized in Chapter 4. 

2. Description of the Methodology  

Survival analysis is a statistical method used to analyse 

the probability of an event occurring as a function of 

time. This method is primarily used in the natural sci-

ences, in which, for example, the likelihood of patient 

survival from the moment of diagnosis, initiation of 

treatment and so on is examined. In economic and re-

lated fields, this method is applied mainly to the analy-

sis of bankruptcy or default. In our study, survival anal-

ysis is used for rating modelling. This chapter is de-

voted to explaining the methodology used, including 

the terminology and main principles. 

Survival analysis should be used to analyse data in 

which the time until the event is of interest. The re-

sponse variable, the time until that event, is typically 

called the failure time, survival or event time (Harrell, 

2010). Survival analysis allows the response to be in-

completely determined for some subjects; for example, 

we cannot follow all the observations in the dataset. 

This method is based on the mechanism of censoring 

when censored and uncensored observations are de-

fined. For example, Hosmer et al. (2008, p. 18) describe 

a censored observation as an incomplete value due to 

random factors for each subject. In the following text, 

we focus on the fundamental theoretical background, 

which can be supplemented by a variety of relevant lit-

erature, for example Gourieroux and Jasiak (2007), 

Tabachnik and Fidell (2007), Hosmer et al. (2008), 

Cleves et al. (2010), Harrell (2010), Royston and Lam-

bert (2011) and Klein et al. (2014). 

2.1 Main Concepts of Survival Analysis 

A key issue in survival analysis is to estimate the like-

lihood that subjects will survive a certain length of 

time. The likelihood of survival to a certain point in 

time is conditioned by the fact that the subject has sur-

vived the previous length of time. The total probability 

of survival is then given by the product of these indi-

vidual probabilities, for example  

   1 2 3
( ) ... ,

t
S t p p p p=    (1) 

where 
1 2 3

... ,
t

p p p p  is the conditional probability of 

surviving time t  after having survived time 1t − .  The 

t
p  can be expressed as 

   
( )

1 ,t t t

t

t t

n d d
p

n n

−
= = −    (2) 
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where 
t

n is the number of subjects alive at the start of 

the interval ending at time 1t +  and 
t

d is the number of 

subjects failing in the short time interval just after .t  

Thus, equation (1) can be rewritten as 

   ( ) 1 .t

t t

d
S t

n

 
= − 

 
    (3) 

The successive overall survival probabilities, 

(1), (2),..., ( )S S S t , are referred to as the Kaplan–Meier 

(K-M) or product-limit survival estimates. A graphical 

representation of ( )S t  as a function of time t is the K-

M estimate of the survival curve, which is plotted as a 

step function. The K-M estimate describes the time to a 

given event based on all the available data.  

Klein et al. (2014) define the distribution function 

of the survival time, commonly called the failure func-

tion, as the probability of failure up to time t,  

    ( ) Pr( ),F t T t=      (4) 

where T is a non-negative random variable denoting the 

time to a failure event and F(t) refers to the cumulative 

distribution. For practical reasons, it is often more ap-

propriate to use a complementary function in survival 

analysis, the survival function S(t), which is the proba-

bility of surviving beyond time t, 

   ( ) 1 ( ) Pr( ).S t F t T t= − =          (5) 

Using the survival function, we can estimate the prob-

ability of no failure event occurring prior to t. The den-

sity function f(t) can be obtained both from S(t) and 

from F(t): 

   
( )

( ) 1 ( ) ( ).
dF t d

f t S t S t
dt dt

= = − = −   (6) 

To assess how the risk of a particular outcome var-

ies with time, we use the hazard rate ( )h t . According 

to Harrell (2010), the hazard at time t  is related to the 

probability that the event will occur in a small interval 

around t , given that the event has not occurred before 

time t . Cleves et al. (2010) explain the hazard rate as 

the conditional failure rate or the intensity function. As 

they emphasize, the hazard rate represents the instanta-

neous rate of failure with 1/ t units: 

   
0

Pr( ( )
( ) lim .

( )t

t t T t T t f t
h t

t S t →

+    
= =


  (7) 

The hazard function can range from zero (no risk) to 

infinity (the certainty of failure at that instant) and can 

be decreasing, increasing or constant; alternatively, it 

can even take on other shapes.  

Depending on the assumptions about the failure-

time distribution, there are various methods of survival 

analysis. Cleves et al. (2010) specify three approaches 

and relevant models as follows:  

• Nonparametric models (Kaplan–Meier and 

Nelson–Aalen);  

• semiparametric models (Cox proportional haz-

ards model); and  

• parametric models (e.g. exponential, Weibull, 

lognormal, log-logistic, gamma and Gom-

pertz).  

While parametric models require assumptions about the 

distribution of failure times, semiparametric models are 

parametric in the sense that the effect of the covariates 

is assumed to take a certain form. In this case, no para-

metric form of the survival function is specified, yet the 

effects of covariates are parametrized to modify the 

baseline survivor function. Thus, compared with the 

previous approaches, nonparametric models do not re-

quire any assumptions about the distribution of failure 

times.  

Nonparametric methods estimate the probability of 

survival past a certain time or compare survival experi-

ences for different groups (Cleves et al., 2010). The 

common characteristic of nonparametric models is that 

they do not make any assumptions about the distribu-

tion of failure times or the way in which covariates 

change the survival experience. The Kaplan–Meier es-

timator of the survivorship function at time t can take 

the form of the following equation: 

   
( )

ˆ( ) ,
i

i i

t t i

n d
S t

n

−
=  (8) 

where 
i

n  is the number at risk of dying (company fail-

ure) at ( )i
t , 

i
d  refers to the observed number of failures 

and ˆ( ) 1S t = if 
( )

.
i

t t  If we assume that the time vari-

able is absolutely continuous, then the survival function 

may be expressed as 

   
( )( ) ,H tS t e−=  (9) 

where H(t), the cumulative hazard function, can be 

written as 

   ( ) ln( ( )).H t S t= −  (10) 

Aalen, Nelson and Altshuler propose the indicator H(t), 

which is referred to as the Nelson–Aalen estimator 

(Hosmer et al., 2008). The Nelson–Aalen estimator of 

H(t) is given by 

   
( )

ˆ ( ) .
i

i

t t i

d
H t

n

=  (11) 
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Semiparametric models do not assume any para-

metric form of the survival functions. The effects of the 

covariates are parametrized to modify the baseline sur-

vival function. According to Hosmer et al. (2008), the 

regression model for the hazard function can be ex-

pressed as 

   0
( , , ) ( ) ( , ),h t x h t r x =       (12) 

where 
0
( )h t  characterizes the change in the hazard 

function as a function of the survival time and ( , )r x 

describes how the hazard function changes as a func-

tion of the subject covariates. The model makes no as-

sumptions about the shape of the hazard over time. 

However, the general shape of the hazard is the same 

for everyone. One subject's hazard is a multiplicative 

replica of another's, which is constant. The quantities 

estimated from the model are hazard ratios, which 

measure the extent to which a covariate increases or de-

creases the rate of a particular event. 

Parametric models are used when the distribution of 

the survival time has a known parametric form. They 

generally provide smooth estimates of the hazard and 

survival functions for any combination of covariate val-

ues. According to Hosmer et al. (2008), using these 

models may have the following advantages. Full maxi-

mum likelihood may be used to estimate the parame-

ters, the estimated coefficients or their transformations 

can provide clinically meaningful estimates of effects, 

fitted values from the model can provide estimates of 

survival time and residuals can be computed as differ-

ences between observed and predicted values of the 

time.  

2.2 Cox Proportional Hazard Model 

The Cox proportional hazard model is a semiparametric 

model of survival analysis. The effect of the covariates 

is assumed to take a certain form compared with the 

nonparametric approach. In this case, no parametric 

form of the survival function is specified, yet the effects 

of the covariates are parametrized to modify the base-

line survivor function. In general, the baseline survival 

function is the function for which all the covariates are 

equal to zero in a certain way. The hazard function (9) 

is the product of two parts, which characterizes how the 

hazard function changes as a function of the survival 

time, and the function ( , )r x =  describes how the 

hazard function changes as a function of the subject co-

variates.  

It follows from the model that: 

• The functions must be chosen such that 

( , , ) 0,h t x    

• 
0
( )h t  is the hazard function when ( , ) 1,r x  =  

• 
0
( )h t  is referred to as the baseline hazard 

function when the function ( , )r x   is para-

metrized such that ( 0, ) 1.r x = =  

Thus, the baseline hazard function can be seen as a 

generalization of the intercept or constant term found in 

parametric regression models. We do not make any as-

sumptions about 
0
( )h t , however, at the cost of a loss of 

efficiency. Although the model makes no assumptions 

about the shape of the hazard over time, the general 

shape is assumed to be the same for everyone.  

The ratio of the hazard functions for two subjects 

with covariate values denoted 
0

x and 
1

x is: 

   

1

1 0

0

0 1 1

1 0

0 0 0

( , , )
( , , ) ,or

( , , )

( ) ( , ) ( , )
( , , ) .

( ) ( , ) ( , )

h t x
HR t x x

h t x

h t r x r x
HR t x x

h t r x r x





 

 

=

= =

  (13) 

As we can see in (13), the hazard ratio (HR) depends 

only on the function ( , ).r x    

This model was originally proposed in 1972 by 

Cox, who suggested using ( , ) exp( )r x x =  for prac-

tical reasons. Then, the hazard function can be ex-

pressed as: 

    0
( , , ) ( ) ,xh t x h t e  =  (14) 

and the hazard ratio is 

    1 0( )

1 0
( , , ) .

x x x
HR t x x e

 −
=  (15) 

This model is the most-used semiparametric model, 

called the Cox model, the Cox proportional hazards 

model or the proportional hazards model. The term pro-

portional hazards (PHs) refers to the fact that the hazard 

functions are multiplicatively related; thus, their HR is 

constant over time (Hosmer et al., 2008, p. 70). In other 

words, we assume that the covariates multiplicatively 

shift the baseline hazard function. Then, one subject's 

hazard is a multiplicative replica of another's (Cleves et 

al., 2010). Besides the assumption of proportional haz-

ards, other parametrizations can be used, for example 

additive models. These parametrization approaches are 

described in the relevant literature (Hosmer et al., 2008; 

Klein et al., 2014). 

2.3 Multiple Failure-Time Data 

Cleves (2000) describes multiple failure-time data as 

data in which any of two or more events (failures) occur 

for the same subject or from identical events occurring 

to related subjects. The typical feature is that the failure 

times are correlated within a cluster (subject or group), 
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violating the independence of failure times assumption 

required in traditional survival analysis. As the author 

points out, failure events should be classified according 

to whether they have a natural order and recurrences of 

the same type of events. The events are supposed to be 

ordered when the second event cannot occur before the 

first event. On the contrary, unordered events can hap-

pen in any sequence. 

 There are more approaches to examining multiple 

failure-time data. The first method considers the time 

to the first event, ignoring additional failures. However, 

this means that we do not make use of all the available 

data. The second method is based on analysing the 

available data while accounting for the lack of inde-

pendence of the failure times. Cleves (2000) suggests 

corresponding procedures for estimating these models 

using the Cox proportional hazard model. Under the 

proportional hazard assumption, the hazard function 

(14) of the ith cluster for the kth failure type is as fol-

lows: 

          
,

0
( , ) ( ) ,iZ

k ki
h t Z h t e


=  (16) 

where 
ki

Z  is a p-vector of possibly time-dependent co-

variates for the ith cluster to the kth failure type. While 

we presume in equation (16) that the baseline hazard 

function is equal for every failure type, the baseline 

hazard function is allowed to differ by failure type in 

the following formula:  

    
,

0
( , ) ( ) .iZ

k ki k
h t Z h t e


=  (17) 

As Cleves (2000) suggests, the maximum likelihood es-

timates for models (16) and (17) are obtained from 

Cox's partial likelihood function ( )L  , assuming inde-

pendence of failure times. 

Concerning the analysis of multiple failure-time 

data, Cleves (2000) emphasizes the need to determine 

whether they are ordered or unordered data and select a 

suitable method for estimating models accordingly. In 

the case of unordered times, which is the case for rating 

analysis, it is first necessary to determine whether the 

events are of the same or different types. Similarly, a 

decision is required on whether the baseline hazard is 

the same or different for all event failures. In any case, 

it is necessary to implement the methods in which the 

data are correctly structured, including identifying in-

dividual failure events. 

 
1 MORE ratings classify companies similarly as rating agen-

cies (Bureau van Dijk Electronic Publishing, 2008). MORE 

ratings are calculated using a unique model that references the 

company's financial data to create an indication of the com-

pany's financial risk level.   

3. Modelling of Rating Downgrades 

The aim of this study is to examine the relationship be-

tween time and corporate rating downgrades, including 

the influence of the variables used. In this study, the 

event, or failure in terms of survival analysis, is defined 

as a rating downgrade. As the rating can be downgraded 

more than once during the period under our observa-

tion, multiple failure-time analysis approaches should 

be used. Thus, survival analysis models are estimated 

using the Cox proportional hazard model for multiple 

failure-time data. Furthermore, we aim to model the rat-

ing downgrade depending on the time and the annual 

changes in financial variables. Therefore, we use yearly 

changes in the rating as the dependent variable and 

yearly changes in the financial covariates as the inde-

pendent variables in our model. Specifically, the de-

pendent variable is a rating downgrade. This choice is 

quite natural because it is crucial to detect a potential 

deterioration in investment quality, which increases the 

credit risk.  

This study is focused on the analysis of corporate 

credit ratings from eight countries in Central and East-

ern Europe (CEE): the Czech Republic, Estonia, Hun-

gary, Latvia, Lithuania, Poland, Slovakia and Slovenia. 

As global rating agencies do not rate many companies 

in these countries, the models are estimated based on 

the Multi-Objective Rating Evaluation (MORE).1 The 

MORE methodology, as part of the issuance of credit 

ratings, complies with Regulation (EC) N. 1060/2009 

of the European Parliament and the Council of 16 Sep-

tember 2009 (the Credit Rating Agencies Regulation). 

Therefore, with effect from 10 July 2015, it is registered 

as a credit rating agency in accordance with this regu-

lation.2 The data sample contains records of 1249 com-

panies (2002–2007).  

We follow rating assessments and various financial 

variables on an annual basis. Thus, we have a total of 

7494 observations. Without specifications of related 

subjects based on id, the overall data consist of 6245 

observations, 705 (single) and 870 (multiple) events de-

fined as rating downgrades and 18,735 (single) and 

15,358 (multiple) of the total analysis time. In both 

cases, we use 2,436 observations. Since we assume that 

the observations for each company may be correlated, 

we adjust for this by clustering as follows. The compa-

nies are interpreted as the same sampling units by using 

the id() identifier, allowing us to specify related sub-

jects. Thus, we analyse the data based on 737 clusters. 

2 MORE rating by the first Fintech Rating Agency – S-Peek, 

online access: https://www.s-peek.com/en/more-rating (17 

June 2019). 
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For each company in our data sample, we follow the 

rating assessment and various financial variables annu-

ally (Table 1-1). The independent covariates in the 

model are the annual percentage changes in the relevant 

financial indicators, referred to as covariates in the ta-

ble. We consider all rating downgrades as the same 

event type and do not distinguish the downgrade size. 

Nevertheless, the rating changes by more than one de-

gree in a marginal number of cases, so we do not take 

this fact into account.  

Table 1–1 Description of financial variables 

Financial indicator Covariate Mean 

Total assets tag 22.25 

Return on assets roag 86.70 

Return on equity roeg 66.24 

EBITDA to total debt ebitdarg 27.57 

Equity to total  

assets 
eqtag 12.33 

Cash flow cfg 55.62 

Interest coverage intcovg 149.13 

In this study, we estimate survival models using two 

approaches. First, we examine the time to the first 

event, ignoring additional downgrades. Next, we make 

use of all the available data and account for multiple 

failure-type data. This procedure allows us to compare 

the two approaches and make recommendations.  

3.1 Estimation of Rating Survival Models 

The models will be developed based on the above-de-

scribed approaches. Since we consider single and mul-

tiple failure-time data, we estimate two models, re-

ferred to as single and multiple. First, we perform a 

simple survival analysis, in which we consider only the 

first rating downgrade, ignoring additional ones for 

each company. Thus, the data consist of 256 defined 

events (downgrades) and 8253 total analysis time data. 

The time is measured in years after the time of origin, 

set as the year 2002.  

The graph of the Kaplan–Meier estimate of the sur-

vival function is shown in Figure 1-1. Next, we estimate 

the survival model based on multiple failure-time event 

data. Using this procedure, we will consider any rating 

downgrades for the entity. Therefore, since numerous 

events can occur for each subject, it is a multiple fail-

ure-time analysis of the same type. The time until the 

event is measured as the time since the last event for 

each subject. The data consist of 331 downgrades and 

6732 of the total analysis time data. The Kaplan–Meir 

estimate of the survival function for multiple failure-

time data is shown in Figure 2-1. In both cases, the sur-

vival curve has a descending, stepped shape. By com-

paring Figures 1-1 and 2-1, we can see that the proba-

bility of survival, that is, a stable or improved rating, is 

higher in the case of single data. It is a consequence of 

the assumptions used in the survival analysis as, in this 

case, only one event is allowed for each subject. 

 

Figure 1–1 Kaplan–Meier survival estimate (single) 

 

Figure 2–1 Kaplan–Meier survival estimate (multiple) 

The resulting models are summarized in Table 2-1.  

We can see the estimated coefficients of the independ-

ent variables (coeff.), including the standard error, in 

the brackets. For completeness, the hazard ratios (HRs) 

are also listed in the table. If we compare the two mod-

els, we can see that the estimated coefficients do not 

differ significantly. Thus, the effect of the variables 

used on the probability of survival, that is, a stable or 

upgraded rating, is similar. All the coefficients are sta-

tistically significant at the 0.05 level in the multiple 

model. 
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Table 2–1 Estimated coefficients of the Cox models 

Indep. 

variable 

Coeff. 

Single 

HR 

Single 

Coeff. 

Multiple 

HR 

Multiple 

tag 
0.0083* 

(0.002) 
1.0083 

0.0084* 

(0.002) 
1.0084 

roag 
-0.0027* 

(0.001) 
0.9973 

-0.0034* 

(0.001) 
0.9966 

roeg 
0.0030 

(0.002) 
1.0030 

0.0038* 

(0.001) 
1.0038 

ebitdarg 
-0.0079* 

(0.004) 
0.9921 

-0.0083* 

(0.003) 
0.9918 

eqtag 
-0.0153* 

(0.005) 
0.9848 

-0.0184* 

(0.004) 
0.9817 

cfg 
-0.0117* 

(0.003) 
0.9884 

-0.0142* 

(0.003) 
0.9859 

intcovg 
-0.0062* 

(0.002) 
0.9940 

-.0063* 

(0.002) 
0.9938 

* Significant at the 0.05 level; standard errors adjusted for 737 

clusters. 

The estimated coefficients can be used to interpret 

the effect of individual variables, but it is more appro-

priate to use the hazard rates. For example, an increase 

in tag by one unit (the annual change in total assets by 

1%) increases the hazard of a rating downgrade by 

0.84%. Conversely, if the covariate eqtag increases by 

one unit, the hazard decreases by 1.83%. From the 

overall results, we can see that an annual percentage 

change of one unit in the variables roa, ebitda, eqta, cf 

and intcov reduces the hazard of the rating downgrade. 

In contrast, the hazard is increased by changes in the 

variables ta and roe. 

To assess the influence of the variables on the haz-

ard, we determine the hazard for the so-called average 

company (H1); that is, the values of the variables are 

equal to their mean values. Subsequently, we compare 

this hazard with the baseline hazard, when the values of 

all the variables are equal to zero (H0). The graphical 

representation is presented in Figures 3-1 and 4-1. In 

both graphs, we can see that H1 lies below the baseline 

hazard, H0. It follows from the fact that the baseline 

hazard corresponds to a situation in which all the co-

variates are zero. However, a zero annual change in the 

financial indicators means that the risk of a rating 

downgrade must be higher than in the average compa-

ny's yearly changes. 

 

 

Figure 3–1 Baseline and average hazard (single) 

 

Figure 4–1 Baseline and average hazard (multiple) 

3.2 Results and Interpretation 

When using the Cox model, it is advisable to verify that 

the hazard functions are multiplicatively related. There-

fore, we use the plot of the estimated hazard on a log 

scale using the kernel smoother to test the proportional 

hazards assumption. Since the lines in Figure 1 (Appen-

dix) seem to be parallel, we conclude that the propor-

tionality assumption in both models is not violated. 

The test of the proportional hazards specification is 

based on the Schoenfeld residuals after fitting the 

model. It is used to test the independence between re-

siduals and time. The test results in Table 3-1 suggest 

that the hazard assumption is not proportional for three 

variables: roag, roeg and intcovg. However, based on 

the global test, we find no evidence that our specifica-

tion violates the proportional hazards assumption in 

both models.  
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Table 3–1 Test of PH assumptions 

Indep. 

variable 

Single 

rho  

(Chi2) 

Multiple 

rho  

(Chi2) 

tag 
-0.0862 

(1.53) 

-0.0724 

(1.58) 

roag 
-0.0935 

(6.44) * 

-0.0800 

(4.95) * 

roeg 
0.0954 

(6.48) * 

0.0836 

(5.46) * 

ebitdarg 
-0.0148 

(0.13) 

-0.0087 

(0.05) 

eqtag 
0.0873 

(2.65) 

0.0556 

(1.46) 

cfg 
0.0817 

(2.57) 

0.0803 

(3.34) 

intcovg 
-0.0704 

(7.23) * 

-0.0683 

(7.16) * 

Global (11.64) (10.59) 

* Significant at the 0.05 level; standard errors adjusted for 737 

clusters. 

The explained variation in the estimated models is 

measured using the adjusted index of determination R2 

(Royston, 2006). The value of R2 equals 0.4689 (SE = 

0.104) for the single model and 0.4973 (SE = 0.0231) 

for the multiple model. The greatest contribution to the 

explained variation is made by the covariates intcovg, 

cfg, eqtag and tag based on a comparison of the models 

with different numbers of predictors. Detailed results 

are presented in the Appendix (Table 1), which contains 

the data for models with a decreasing number of covari-

ates. The last row includes a model containing only one 

variable, intcovg. 

The overall model fit is evaluated using Cox–Snell 

residuals. Figures 5-1 and 6-1 show the Nelson–Aalen 

cumulative hazard estimator plots for the Cox–Snell re-

siduals for both models. We can see some variability 

around the 45° line, particularly in the right-hand tail. 

Cleves et al. (2010) argue that some variability is ex-

pected due to the reduced effective sample caused by 

prior failures and censoring. Comparing Figures 7-1 

and 8-1, we can conclude that the multiple model fits 

the data better than the single model. 

Overall, the multiple failure-time data analysis 

leads to a more suitable model based on the statistical 

significance of the estimated coefficients and goodness 

of fit. On the other hand, it should be noted that the two 

survival models are very similar based on the estimated 

coefficients and explained variation. However, with re-

spect to the validation and interpretation of both mod-

els, we should use a multiple failure-time analysis. 

 

Figure 5-1 Cumulative hazard of Cox–Snell residuals (sin-

gle) 

 

Figure 6-1 Cumulative hazard of Cox–Snell residuals (mul-

tiple) 

4. Conclusion  

This study aimed to develop rating models using sur-

vival analysis methods. Specifically, we applied the 

Cox proportional hazards model to analyse the survival 

time until the event. In our case, we focused on using 

survival analysis to model the time to a rating down-

grade. As part of the analysis, we examined the effect 

of financial variables on the probability of a negative 

annual rating change. 

Two different approaches were used to estimate the 

models, depending on whether we were considering 

only one or more events, defined as rating downgrades, 

for one company. The single model was derived on the 

assumption that the event can occur only once for each 

subject. The multiple model, on the other hand, as-

sumed that the event can occur repeatedly. Due to these 

different assumptions, the input data and their structure 

also had to be adjusted. 
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 The resulting models were presented based on the 

estimated coefficients for the variables used in the anal-

ysis. Both models were statistically significant, as were 

the estimated coefficients of the individual variables in 

the multiple model. Based on the overall results, we 

concluded that the annual changes in the financial var-

iables used affect the probability of the rating down-

grade. We used the baseline hazard and the hazard of 

the so-called average company to interpret the models 

based on the mean values of the variables. The fit of 

both models was assessed using Cox residuals. Based 

on the main findings of this study, we concluded that 

the multiple model approach is more suitable for events 

that might occur repeatedly. The simple model should 

be used to examine the survival time until the first event 

for any reason. In other cases, we should use multiple 

failure-time data analysis, which makes better use of 

the available data.  

The overall findings of this work show that survival 

analysis is, in addition to typical financial problems, 

such as the analysis of survival to bankruptcy or de-

fault, also suitable for other types of tasks. However, 

when applying it, it is necessary to consider the specific 

data structure, especially whether the event can occur 

repeatedly for one subject or whether more events can 

occur for a given subject. In these cases, it is appropri-

ate to use multiple failure-time analysis, which corre-

sponds better to the problem.  
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Appendix 

 

Figure 1: Smoothed hazard functions 

(a) Single model 

 

 

(b) Multiple model 

 

Table 1: Explained variation 

(a) Single model 

Variables R2 St. error Confidence interval 

All 0.4690 0.0270 0.4136 0.5193 

-tag 0.4485 0.0275 0.3923 0.5000 

-roag 0.4483 0.0275 0.3922 0.4999 

-roeg 0.4418 0.0280 0.3846 0.3922 

-ebitdarg 0.4471 0.0227 0.4010 0.4900 

-eqtag 0.4200 0.0231 0.3734 0.4638 

-cfg 0.3864 0.0242 0.3377 0.4327 

 

 

 

 



 Ekonomická revue – Central European Review of Economic Issues 22, 2019 

 
56 

(b) Multiple model 

Variables R2 St. error Confidence interval 

All 0.4973 0.0231 0.4500 0.5406 

-tag 0.4814 0.0235 0.4333 0.5256 

-roag 0.4814 0.0235 0.4334 0.5255 

-roeg 0.4664 0.0240 0.4174 0.5115 

-ebitdarg 0.4530 0.0202 0.4122 0.4912 

-eqtag 0.4241 0.0206 0.3825 0.4633 

-cfg 0.3953 0.0219 0.3514 0.4370 

 


