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Abstract 

Break-even analysis is a tool suitable for making short-term decisions about the quantity of production. Traditional 

break-even analysis is based on certain assumptions among which the most important are the following limitations: 

variable costs are linearly dependent on sales volume; price of the product is stable; fixed costs do not change. 

Moreover, we assume that all the input variables (variable costs per unit, fixed costs and price of the product) are 

known with certainty. However, these variables may be random and thus not known in advance. For instance, a firm 

can be price-taker – the price of the product is a random variable determined by the market, variable costs per unit 

depend on the price of raw materials, which again cannot be known in advance with certainty. In our paper, we 

discuss the break-even analysis introducing randomness. We focus on two input variables – the price of the product, 

which influences the revenues, and the variable costs per unit, which influence the costs. Both random inputs are 

supposed to follow joint normal distribution and normal inverse Gaussian distributions joined together by copula 

function. 
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1. Introduction 

The traditional break-even analysis is suitable tool for 

making short-term decisions about the quantity of 

production. It is based on the fundamental limitations 

and assumptions among which we can mention the 

following: all production is realized (sold); revenues 

and total costs vary only due to changes in sales 

volume; all costs may be divided into fixed and variable 

costs; variable and total costs evolve linearly; fixed 

costs do not change; the price of the product remains 

unchanged; technology and organization of production 

does not change; production process is continuous. 

These assumptions imply that the revenues and the total 

costs can be expressed as linear equations, or lines in 

the case of graphical representation – for detailed 

explanation see e.g. Cafferky and Wentworth (2014) or 

Warren et al. (2015). 

Under such a setting, we can calculate the break-

even point, i.e. sales volume at which total revenues are 

equal to total costs, from the input variables, which are 

the price of the product, variable costs per unit of 

product and fixed costs. In traditional break-even 

analysis, all these input variables are assumed to be 

known with certainty, which clearly is the case of the 

fixed costs (usually repetitive costs that are known in 

advance). However, even assuming a short-term 

period, the price of the product and variable costs may 

be known only with uncertainty, i.e. we do not know 

the exact value, but at least we know its probability 

distribution. An example can be the firm selling all its 

production in foreign currency, thus, the revenues (in 

domestic currency) depend on the foreign exchange 

rate. Another example is the firm manufacturing a 

product the price of which is defined by the market – 

imagine, for example, a company producing electricity 

and selling it on a spot market. On the other hand, the 

variable costs per unit of product are mostly raw 

materials, the prices of which do not have to be known 

in advance. 

In the literature, there are two approaches of 

introducing uncertainty into traditional break-even 

analysis: stochastic randomness and fuzzy uncertainty. 

For the first approach we can mention, for example, 

papers of Jaedicke and Robichek (1964), who assumed 

profits to be a random variable, followed by Dickinson 

(1974) and Yunker and Yunker (2003) who assumed 

the price to be neither a constant nor a random variable 

but rather the firm's basic decision variable. In these 

papers, the attention is focused mostly on the situation 

with single source of randomness, which is modelled 

by normal (Gaussian) distribution. The examples of the 

later approach are papers of Yuan (2009) or Chrysafis 

and Papadopoulos (2009). 

The goal of the paper is to modify the traditional 

break-even-point analysis for the assumption of 

random input variables and compare the results of both 

approaches for the practical example. In the paper, we 

also study the influence of distribution shape on the 

results; specifically, we compare normal distribution 

already studied by Kresta and Lisztwanová (2017) with 

heavy-tailed normal inverse Gaussian distribution.  

The structure of the paper is as follows. In the next 

section, we briefly recap the traditional break-even 

analysis. In the third section we introduce the break-

even analysis with random variables. The practical 

example is provided in the fourth section. Finally, the 

fifth section is the conclusion. 

2. Break-even analysis under certainty 

The break-even point represents a sales volume at 

which total revenues (TR) are equal to total costs (TC) 

and at which neither profit nor loss is made,  

 TR TC . (1) 

Total revenues can be computed as the price of the 

product (p) multiplied by sales volume (Q) and total 

costs can be divided into fixed costs (FC) and variable 

costs (VC). Variable costs are computed as variable 

costs per unit (vc) multiplied by sales volume (Q). After 

substitutions, we get the following equations, 

 p Q FC vc Q    , (2) 

which we solve for Q, 

 
FC

Q
p vc




. (3) 

Moreover, we can substitute the term p – vc by m (unit 

margin), 

 
FC

Q
m

 . (4) 
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3. Break-even analysis under randomness 

Assume that the price of the product and variable costs 

per unit are not known with certainty, but can be 

described by proper probability distribution. In this 

case, we cannot calculate the break-even point for 

which we know for sure that there will be no loss, but 

we must specify the confidence level, i.e. the 

probability with which there will be no loss. For 

example, if we assume a confidence level of 85%, the 

calculated break-even point under randomness means 

that for this sales volume there is an 85% probability 

that there will be no loss. On the other hand, there is a 

15% chance that there will be a loss. 

Based on the applied probability distributions of 

random inputs and their dependence structure we can 

distinguish the simple case of joint normal distribution 

(solvable by analytical formula) and a more general 

case for which Monte Carlo simulation must be applied. 

3.1 Joint normal distribution – analytical formula 

If ( , )p pp N    and ( , )vc vcvc N    and p and v are 

correlated with correlation coefficient ,p vc  then 

2 2
,( , 2 )p vc p vc p vc p vcm N             . 

Assuming a confidence level  , we can calculate the 

break-even point under randomness similarly to 

equation (4) as follows, 

 1 2 2

,
1 ; ; 2

p vc p vc p vc p vc

FC
Q

       


       

. (5) 

3.2 Simulation approach 

In formula (5) we assumed the simplifying example of 

joint normal distribution, which does not have to be the 

case in real-world applications. Assume, for example, 

that the product is sold in foreign currency, which 

influences the revenues (no hedging of foreign 

exchange rate). Under such a set-up, we should assume 

some heavy-tailed distribution and apply the simulation 

approach. We proceed as follows. 

1. We simulate random variable costs per unit and 

prices per unit with a corresponding dependence 

structure and marginal distributions, see e.g. 

Kresta (2010); 

2. for each simulation we compute the break-even 

point; 

3. finally, we compute the quantile of simulated 

break-even points. 

In order to simulate the random variables we shall apply 

the copula approach with some heavy-tailed 

distribution. Thus, further we will briefly introduce the 

copula functions and probability distributions applied 

in a practical example. 

3.2.1 Copula functions 

A useful tool for the simulation of dependent random 

variables are the copula functions. Further, we will 

explain only the basic theory of copula functions, for 

more detailed explanation see, for example, Nelsen 

(2006), Rank (2006) or Cherubini et al. (2004). 

Assume two potentially dependent random 

variables X, Y with marginal distribution functions FX 

and FY and a joint distribution function FX,Y. Then, 

following Sklar’s theorem: 

  , ( , ) ( ), ( )X Y X YF x y F x F y . (6) 

Formulation (6) should be understood such that the 

joint distribution function gives us two distinct pieces 

of information: (i) the marginal distributions of the 

random variables; and (ii) the dependency function of 

the distributions. Hence, while the former is given by 

FX and FY, the copula function specifies the 

dependency. Only when we put the two pieces of 

information together, we have sufficient knowledge 

about the pair of random variables X, Y. 

With some simplification, we can distinguish 

copulas in the form of elliptical distributions and 

copulas from the Archimedean family. The main 

difference between these two forms lies in the methods 

of construction and estimation. While for the latter the 

primary assumption is to define the generator function, 

for the former the knowledge of the related joint 

distribution function (e.g. Gaussian, Student) is 

sufficient. 

3.2.2 Gaussian distribution 

The Gaussian (also called normal) distribution is well-

known continuous probability distribution, which can 

be easily recognized by its bell curve shape. It can be 

characterized by the following probability density 

function, 

  
 

2

22
1

; ,
2

x

N
f x e



 
 




 , (7) 

and cumulative distribution function, 

  
 

2

22
1

; ,
2

t
x

x e dt


 
 





   , (8) 

where   and   are the parameters that determine the 

shape of the distribution. The first parameter defines the 

location (mean, median and mode of the distribution are 

equal to this parameter) and the second parameter 

defines the scale of the distribution (standard deviation 

is equal to this parameter). Normal distribution is 

symmetrical. 
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3.2.3 Normal inverse Gaussian distribution  

Normal inverse Gaussian distribution (hencefort NIG) 

was defined in Barndorff–Nielsen (1995). Assuming 

parameters 0  ,      , 0   and  , the 

distribution has the following probability density 

function, 

 

 

  

  
 

2 2

22

1

22

; , , ,

exp

NIG
f x

x

K x

x


   



    

  

 



  

 

 

, (9) 

and corresponding cumulative distribution function, 

 

 

  
 

  

22

1

22

2 2

; , , ,

,

exp

NIG

x
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t


   



  
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    
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
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 
 

  
 
   
 



 (10) 

where K(x) denotes modified Bessel function of the 

third kind. In this distribution, parameter   influences 

the location,   influences the tail heaviness,   

influences the asymmetry and   influences the scale 

of probability distribution. 

The first four central moments of both distributions 

described above are summarized in Table 1. As is clear, 

skewness and kurtosis of Gaussian distribution cannot 

be influenced – skewness is always zero (i.e. Gaussian 

distribution is symmetrical) and kurtosis is always 

equal to 3. The formulas in Table 1 can be applied for 

the estimation of parameters by means of method of 

moments (see e.g. Tichý, 2011). 

4. Practical example 

In this section, we provide a practical example in which 

we assume both all input variables are certain and two 

input variables are random. Under randomness, we 

assume two probability distributions, namely normal 

(Gaussian) distribution and NIG distribution. In total, 

we study four different cases, which differ in the 

specification of product price and variable costs per 

unit, see Table 2. In the first specification, we assume 

that the price is 100 and variable costs per unit are 60 

with certainty. In the second specification, we assume 

the price to be normally distributed with 95% 

probability of being between 80 and 120 and variable 

costs to be normally distributed with 95% probability 

of being between 50 and 70. In the third and fourth 

specification, we assume price and variable costs to 

have NIG distribution with parameters such that the 

location and scale are the same as in the previous 

specification but the tails are heavier than those of 

Gaussian (third and fourth case) and distributions are 

skewed (fourth case). It is important to ensure the same 

scale of the distributions as this influences the results. 

If we increase the scale (standard deviation) of the 

distributions, i.e. we are less certain about the random 

input values, we obtain higher break-even volumes for 

the same confidence level. Thus, in order to obtain 

comparable results, the standard deviation is the same 

for all random specifications; these only differ in tail 

heaviness and skewness. 

Moreover, we assume linear dependence modelled 

by the Gaussian copula function with a correlation 

parameter of 0.5 in all specifications as well as fixed 

costs to be 1,000,000.  

Table 1 Characteristics of the distributions 

  ,N     , , ,NIG      

Mean     2

1
22 

   

Standard 

deviation 
    2

3
222 

   

Skewness 0   4

1
222

1

13


    

Kurtosis 3 


















222

22 4
13




 

Table 2 Input variables 

Item Certainty 
Randomness –    

Gaussian 

Randomness –  

symmetrical NIG 

Randomness – skewed 

NIG 

Product price (p) 100 N(100;10) 
NIG(100;0.0612;0;6.1

237) 

NIG(103;0.0911;–

0.0353;7.141) 

Variable costs per unit 

(vc) 
60 N(60;5) 

NIG(60;0.1225;0;3.06

19) 

NIG(60.33;0.1265;–

0.0132;3.111) 

Fixed costs (FC) 1,000,000 
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4.1 Break-even point under certainty 

By entering the values of input variables into equation 

(3) we obtain the following break-even point under 

certainty: 

 
1,000,000

25,000
100 60

Q  


. (11) 

We can conclude that in order to avoid the loss we have 

to produce and sell at least 25,000 pieces of product. 

4.2 Analytical computation 

By entering the values of input variables into equation 

(5) we obtain the following break-even point under 

randomness: 

 

 

 

1 2 2

1

1,000,000

1 0.85;100 60; 10 5 2 10 5 0.5

1,000,000

0.15;40;8.66

32,233.

Q





       






 (12) 

We can conclude that in order to be 85% sure that the 

loss will be avoided, the company have to produce and 

sell at least 32,233 pieces of product. For such 

a quantity of production, we can calculate the expected 

profit E(P) as follows, 

    E P E p vc Q FC    , (13) 

   40 32,233 1,000,000 289,315E P     . (14) 

From equation (5), it is obvious that the value of the 

break-even quantity and expected profit depends on the 

confidence level. Thus, we perform the sensitivity 

analysis in Table 3. It can be noted that for a confidence 

level of 50% we obtain the same results as in the case 

of break-even analysis under certainty. This is because 

in this case we are calculating mean value (median and 

mean is the same for joint normal distribution), i.e. it is 

enough to work with the mean values of the 

distributions of both random variables, which are the 

same as in the case of certainty. The next observation 

is that the higher the confidence level, the higher the 

break-even point, which corresponds with a higher 

expected profit. This is logical, as the more confident 

we want to be that there will be no loss, the further we 

get into the tail of probability distribution. Simply 

speaking, the more confident we want to be that there 

will be no loss, the more we have to produce – the 

higher production volume can balance a possibly 

unfavourable low unit margin m. 

4.3 Simulation approach 

In this section we perform simulation approach in order 

to quantify the break-even point under randomness. We 

examine two distributions: normal distribution and NIG 

distribution, for their parameters see Table 2. The 

procedure of simulation and break-even point 

quantification is described in section 3.2. The 

calculations are performed in MATLAB and the source 

code is attached in the appendix. The number of 

simulated trials is set to 5,000,000 for both 

distributions, which guarantees that the results become 

stable and do not change significantly when 

recalculated under a different set-up of the 

pseudorandom numbers generator. 

4.3.1 Break-even point under Gaussian 

distribution 

The results, i.e. the break-even point under randomness 

and corresponding expected profit, under the 

assumption of joint normal distribution are presented in 

Table 4. As can be seen, the results are close to the 

results obtained from the analytical formula. We do not 

comment on the obtained results again and the reader is 

referenced to comments in section 4.2. 

 

 

Table 3 Sensitivity of break-even point to specification of the confidence level  

Confidence level 50% 75% 85% 90% 95% 

Break-even point 25,000 29,275 32,233 34,600 38,827 

Expected profit 0 171,003 289,315 384,014 553,087 

Table 4 Break-even points under randomness modelled by joint normal distribution  

Confidence level 50% 75% 85% 90% 95% 

Break-even point 24,996 29,278 32,226 34,591 38,827 

Expected profit -148 171,138 289,053 383,637 553,070 
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4.3.2 Break-even point under NIG distribution 

In this section we assume the heavy-tailed and skewed 

distributions. Starting from the previous joint normal 

distribution, we first increase the heaviness of the tails 

and next we make the distribution skewed. 

Thus, we first assume symmetrical NIG 

distributions with excess kurtosis equal to 8. The means 

and standard deviations are the same as in the case of 

joint normal distribution (see the parameters in Table 

2).  

The results are presented in Table 5. As can be seen, 

for a confidence level of 50% we get the same break-

even point as in the case of certainty (the joint 

distribution is still symmetrical with means/medians 

equal to the values under certainty). Higher confidence 

levels mean higher break-even volumes – the rationale 

for this has already been discussed, however the break-

even volumes are lower than in the case of normal 

distribution. One may think that the results are incorrect 

as we get lower values for tail-heavier distribution, but 

the opposite is true. We must think about what the tail 

is and what the central part of the distribution is and 

how they are connected. The tail of distribution is only 

a small part of the probability distribution at the edges. 

The rest will be called the central part. Then, if the tails 

are heavy (i.e. the probability of these values is higher, 

let’s say, compared to normal distribution) then the 

central part must be less heavy, i.e. values in this part 

have lower (cumulative) probability and vice versa. So 

we can see, that the higher the heaviness of the tail the 

higher the break-even volumes in the tail and the lower 

the break-even points in the central part. The assumed 

confidence levels are mostly in the central part of the 

distribution. As 95% can be considered as the tail, we 

can see that the break-even volume started to accelerate 

the increase there. Actually, if we analyse even higher 

confidence levels – see Figure 1 – we can conclude that 

break-even volumes are higher under NIG distribution 

only for confidence levels of 96.5% and higher. As can 

be seen, after this point the increase of break-even 

volume starts to accelerate. However, in our opinion, 

these values of confidence level are not applicable in 

the real world. As can be seen, under these 

experimental settings, even considering a 95% 

confidence level, the result is to produce and sell 37,374 

pieces of product, for which we can expect a profit of 

494,959, which is actually half of the value of fixed 

costs.  

 

Figure 1 Comparison of break-even volumes for joint normal 

and symmetrical NIG distributions 

Moreover, we study the effect of the skewness on 

the results. We assume the left-skewed distributions 

with excess kurtosis of 8, for NIG distribution 

parameters see Table 2. The results of the simulation 

are presented in Table 6. As can be seen, the values 

differ significantly only for high confidence levels 

(90% and 95%). For lower confidence levels the results 

are similar to those of symmetrical specification (see 

Table 5).  

5. Conclusion 

The break-even analysis is a traditional tool for making 

short-term decisions about the quantity of production. 

In this paper, we introduce randomness into the 

analysis. The contribution of the paper is twofold: we 

modify the break-even point analysis for the 

assumption of random input variables and compare the 

results of both approaches for the practical example. 

 

Table 5 Break-even points under randomness modelled by symmetrical NIG distribution 

Confidence level 50% 75% 85% 90% 95% 

Break-even point 24,998 27,971 30,277 32,423 37,374 

Expected profit -74 118,838 211,062 296,918 494,959 

Table 6 Break-even points under randomness modelled by skewed NIG distribution 

Confidence level 50% 75% 85% 90% 95% 

Break-even point 24,450 27,655 30,388 33,089 39,839 

Expected profit -22,007 106,195 215,515 323,579 593,559 
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Moreover, we study the influence of distribution shape 

on the results. 

Based on the results, we can summarize the 

following findings. Break-even volume is generally 

higher under randomness and depends (among others) 

on the confidence level assumed, i.e. the more certain 

of no loss we want to be, the higher the break-even 

volume needed. We can also expect that the break-even 

volume increases with increased uncertainty (the scale 

of distributions); however, we have not examined this 

in the paper. Moreover, we have found out that the 

more tail-heavy the distribution we assume, the lower 

is the calculated break-even volume. That is because 

the confidence levels we assumed in the paper are low 

compared, for example, to the modelling of risks in 

financial institutions. However, we think that for 

managerial decisions, the lower values of confidence 

levels are more beneficial as the input variables are only 

roughly estimated, and for high confidence levels, we 

are mooving away from what we can expect on average 

– actually, we can expect a high positive profit. The 

skewness has small effect on the break-even volumes. 
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Appendix 

Code 1 Calculations in Matlab 

Ntrials=5000000; 

alphas=[0.5 0.75 0.85 0.9 0.95]; 

 

%% BE under certainty 

p=100; 

vc=60; 

FC=1000000; 

display('BE under certainty'); 

Q=FC/(p-vc) 

 

%% BE under randomness – analytical solution 

p_sigma=10; 

vc_sigma=5; 

rho=0.5; 

display('BE under randomness – analytical solution\n'); 

analytical_quantiles=FC./norminv(1-alphas,p-vc,sqrt(p_sigma^2+vc_sigma^2-

2*p_sigma*vc_sigma*rho)) 

analytical_ep=a_quantiles*(p-vc)-FC; 

 

%% BE under randomness – simulation approach 

U=copularnd('Gaussian',rho,Ntrials); 

g_p=icdf('Normal',U(:,1),p,p_sigma); 

g_vc=icdf('Normal',U(:,2),vc,vc_sigma); 

m=g_p-g_vc; 

m(m<0)=0; 

Q=FC./m; 

display('BE under randomness – Gaussian\n'); 

gaussian_quantiles=quantile(Q,alphas) 

gaussian_ep=g_quantiles*(p-vc)-FC; 

 

% NIG distribution 

% NIG distribution toolbox can be downloaded at  

% https://www.mathworks.com/matlabcentral/fileexchange/ 

% 10934-normal-inverse-gaussian--nig--distribution-updated-version 

 

%nig_p=niginv(U(:,1),0.0612,0,100,6.1237); 

%nig_vc=niginv(U(:,2),0.1225,0,60,3.0619); 

nig_p=niginv(U(:,1),0.0911,-0.0353,103,7.1414); 

nig_vc=niginv(U(:,2),0.1265,-0.0132,60.3261,3.1107);  

nig_p(isnan(nig_p))=p; 

nig_vc(isnan(nig_vc))=vc; 

m=nig_p-nig_vc; 

m(m<0)=0; 

Q=FC./m; 

display('BE under randomness – NIG\n'); 

nig_quantiles=quantile(Q,alphas) 

nig_ep=nig_quantiles*(p-vc)-FC; 


